• Bankert, R. L., , and P. M. Tag, 2002: An automated method to estimate tropical cyclone intensity using SSM/I imagery. J. Appl. Meteor., 41, 461472, doi:10.1175/1520-0450(2002)041<0461:AAMTET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Black, R. A., , H. B. Bluestein, , and M. L. Black, 1994: Unusually strong vertical motions in a Caribbean hurricane. Mon. Wea. Rev., 122, 27222739, doi:10.1175/1520-0493(1994)122<2722:USVMIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, D. P., , and J. L. Franklin, 2004: Dvorak tropical cyclone wind speed biases determined from reconnaissance-based “best track” data (1997–2003). 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 3D.5. [Available online at http://ams.confex.com/ams/pdfpapers/75193.pdf.]

  • Chu, J.-H., , C. R. Sampson, , A. S. Levine, , and E. Fukada, 2002: The Joint Typhoon Warning Center tropical cyclone best-tracks, 1945-2000. Naval Research Laboratory Ref. NRL/MR/7540-02-16, 112 pp.

  • Corbosiero, K. L., , and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, doi:10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., , J. Molinari, , and M. L. Black, 2005: The structure and intensification of Hurricane Elena (1985). Part I: Symmetric intensification. Mon. Wea. Rev., 133, 29052921, doi:10.1175/MWR3010.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , S. C. Jones, , and M. Riemer, 2008: Hurricane vortex dynamics during Atlantic extratropical transition. J. Atmos. Sci., 65, 714736, doi:10.1175/2007JAS2488.1.

    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1972: A technique for the analysis and forecasting of tropical cyclone intensities from satellite pictures. NOAA Tech. Memo. NES 36, 15 pp.

  • Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420430, doi:10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. 11, 45 pp.

  • Dvorak, V. F., 1995: Tropical Clouds and Cloud Systems Observed in Satellite Imagery: Tropical Cyclones. Workbook Vol. 2, NOAA/NESDIS, 359 pp. [Available from NOAA/NESDIS, 5200 Auth Rd., Washington, DC 20333.]

  • Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5, 1960.

    • Search Google Scholar
    • Export Citation
  • Erickson, C. O., 1967: Some aspects of the development of Hurricane Dorothy. Mon. Wea. Rev., 95, 121130, doi:10.1175/1520-0493(1967)095<0121:SAOTDO>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fett, R. W., 1964: Aspects of hurricane structure: New model considerations suggested by TIROS and Project Mercury observations. Mon. Wea. Rev., 92, 4360, doi:10.1175/1520-0493(1964)092<0043:AOHSNM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fritz, S., , and I. Laszlo, 1993: Detection of water vapor in the stratosphere over very high clouds in the tropics. J. Geophys. Res., 98, 22 95922 967, doi:10.1029/93JD01617.

    • Search Google Scholar
    • Export Citation
  • Fritz, S., , L. F. Hubert, , and A. Timchalk, 1966: Some inferences from satellite pictures of tropical disturbances. Mon. Wea. Rev., 94, 231236, doi:10.1175/1520-0493(1966)094<0231:SIFSPO>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., , and S. M. Imbembo, 1976: The structure of a small, intense Hurricane Inez 1966. Mon. Wea. Rev., 104, 418442, doi:10.1175/1520-0493(1976)104<0418:TSOASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., , and R. E. Hart, 2013: Hurricane eyewall slope as determined from airborne radar reflectivity data: Composites and case studies. Wea. Forecasting, 28, 368386, doi:10.1175/WAF-D-12-00037.1.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41, 12681286, doi:10.1175/1520-0469(1984)041<1268:MACSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , and C. S. Velden, 2004: A pronounced bias in tropical cyclone minimum sea level pressure estimation based on the Dvorak technique. Mon. Wea. Rev., 132, 165173, doi:10.1175/1520-0493(2004)132<0165:APBITC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maclay, K. S., , M. DeMaria, , and T. H. Vonder Haar, 2008: Tropical cyclone inner-core kinetic energy evolution. Mon. Wea. Rev., 136, 48824898, doi:10.1175/2008MWR2268.1.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113, 909930, doi:10.1175/1520-0493(1985)113<0909:EOTSOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markus, R. M., , N. F. Halbeisen, , and J. F. Fuller, 1987: Air Weather Service; our heritage, 1937-1987. Military Airlift Command, U.S. Air Force, Scott AFB, IL, 167 pp.

  • Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112, 14081418, doi:10.1175/1520-0493(1984)112<1408:ACOLAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Olander, T. L., , and C. S. Velden, 2007: The advanced Dvorak technique: Continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Wea. Forecasting, 22, 287298, doi:10.1175/WAF975.1.

    • Search Google Scholar
    • Export Citation
  • Olander, T. L., , and C. S. Velden, 2009: Tropical cyclone convection and intensity analysis using differenced infrared and water vapor imagery. Wea. Forecasting, 24, 15581572, doi:10.1175/2009WAF2222284.1.

    • Search Google Scholar
    • Export Citation
  • Piñeros, M. F., , E. A. Ritchie, , and J. S. Tyo, 2011: Estimating tropical cyclone intensity from infrared image data. Wea. Forecasting, 26, 690698, doi:10.1175/WAF-D-10-05062.1.

    • Search Google Scholar
    • Export Citation
  • Raman, M. R., , and W.-N. Chen, 2014: Trends in monthly characteristics observed over Taipei, Taiwan. J. Atmos. Sci.,71, 1323–1338, doi:10.1175/JAS-D-13-0230.1.

  • Ritchie, E. A., , and W. M. Frank, 2007: Interactions between simulated tropical cyclones and an environment with a variable Coriolis parameter. Mon. Wea. Rev., 135, 18891905, doi:10.1175/MWR3359.1.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., , G. Valliere-Kelley, , M. F. Piñeros, , and J. S. Tyo, 2012: Tropical cyclone intensity estimation in the North Atlantic basin using an improved deviation angle variance technique. Wea. Forecasting, 27, 12641277, doi:10.1175/WAF-D-11-00156.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., , S. Lorsolo, , P. Reasor, , J. Gamache, , and F. Marks, 2012: Multiscale analysis of tropical cyclone kinematic structure from airborne Doppler radar composites. Mon. Wea. Rev., 140, 7799, doi:10.1175/MWR-D-10-05075.1.

    • Search Google Scholar
    • Export Citation
  • Sadler, J. C., 1964: Tropical cyclones of the eastern North Pacific as revealed by TIROS observations. J. Appl. Meteor., 3, 347366, doi:10.1175/1520-0450(1964)003<0347:TCOTEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., , and B. D. McNoldy, 2010: Application of the concepts of Rossby length and Rossby depth to tropical cyclone dynamics. J. Adv. Model. Earth Syst.,2 (7), doi:10.3894/JAMES.2010.2.7.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., , and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shea, D. J., , and W. M. Gray, 1973: The hurricane’s inner core region. I. Symmetric and asymmetric structure. J. Atmos. Sci., 30, 15441564, doi:10.1175/1520-0469(1973)030<1544:THICRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sheets, R. C., 1990: The National Hurricane Center—Past, present, and future. Wea. Forecasting, 5, 185232, doi:10.1175/1520-0434(1990)005<0185:TNHCPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., , and D. S. Nolan, 2009: Reexamining the vertical structure of tangential winds in tropical cyclones: Observations and theory. J. Atmos. Sci., 66, 35793600, doi:10.1175/2009JAS2916.1.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., , and G. C. Craig, 1997: GCM tests of theories for the height of the tropopause. J. Atmos. Sci., 54, 869882, doi:10.1175/1520-0469(1997)054<0869:GTOTFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., , T. L. Olander, , and R. M. Zehr, 1998: Development of an objective scheme to estimate tropical cyclone intensity from digital geostationary satellite infrared imagery. Wea. Forecasting, 13, 172186, doi:10.1175/1520-0434(1998)013<0172:DOAOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and Coauthors, 2006: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteor. Soc., 87, 11951210, doi:10.1175/BAMS-87-9-1195.

    • Search Google Scholar
    • Export Citation
  • Vergados, P., , Z. J. Luo, , K. Emanuel, , and A. J. Mannucci, 2014: Observational tests of hurricane intensity estimations using GPS radio occultations. J. Geophys. Res. Atmos., 119, 19361948, doi:10.1002/2013JD020934.

    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., , J. A. Knaff, , and W. H. Schubert, 2012: A climatology of hurricane eye formation. Mon. Wea. Rev., 140, 14051426, doi:10.1175/MWR-D-11-00108.1.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1979: Forced secondary circulations in hurricanes. J. Geophys. Res., 84, 31733183, doi:10.1029/JC084iC06p03173.

  • Willoughby, H. E., , J. A. Clos, , and M. G. Shoreibah, 1982: Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411, doi:10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wimmers, A. J., , and C. S. Velden, 2010: Objectively determining the rotational center of tropical cyclones in passive microwave satellite imagery. J. Appl. Meteor. Climatol., 49, 20132034, doi:10.1175/2010JAMC2490.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, K., , M. Xue, , and W.-C. Lee, 2012: Assimilation of GBVTD-retrieved winds from single-Doppler radar for short-term forecasting of super typhoon Saomai (0608) at landfall. Quart. J. Roy. Meteor. Soc., 138, 10551071, doi:10.1002/qj.975.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 38 38 12
PDF Downloads 19 19 9

Relationships between Tropical Cyclone Intensity and Eyewall Structure as Determined by Radial Profiles of Inner-Core Infrared Brightness Temperature

View More View Less
  • 1 Oceanography Department, U.S. Naval Academy, Annapolis, Maryland
  • 2 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

Radial profiles of infrared brightness temperature for 2405 different satellite observations from 14 western North Pacific tropical cyclones (TCs) from the 2012 season were analyzed and compared to intensity and changes in intensity. Four critical points along the inner core of each infrared (IR) brightness temperature (BT) profile were identified: coldest cloud top (CCT), first overshooting top (FOT), and lower (L45) and upper (U45) extent of the inner eyewall. Radial movement of the mean CCT point outward with increasing TC intensity, combined with subsequent warming of the mean L45 point with intensity, highlighted structure changes that are consistent with eye and eyewall development. When stratified by latitude and vertical wind shear, the CCT point moved radially outward for all cases, notably at higher intensities for lower-latitude TCs and at lower intensities for higher-latitude TCs. The majority of the warming of the L45 point with increasing intensity occurred for low-latitude and low-shear cases. Slopes of IR BT between the four critical points were statistically significantly negatively correlated with intensity, indicating that stronger (weaker) TCs had more (less) negative slopes of IR BT and more (less) vertical eyewall profiles. Furthermore, except in high-shear cases, the most negative correlations were found in the inner eyewall, consistent with results from recent studies based on radar reconnaissance data. Finally, 12-h changes in slope were found to lead 12-h changes in intensity most often at higher latitudes, providing evidence that changes in the secondary TC circulation may lead changes in the primary TC circulation for both strengthening and weakening TCs.

Corresponding author address: Bradford S. Barrett, 572C Holloway Rd., Annapolis, MD 21402. E-mail: bbarrett@usna.edu

Abstract

Radial profiles of infrared brightness temperature for 2405 different satellite observations from 14 western North Pacific tropical cyclones (TCs) from the 2012 season were analyzed and compared to intensity and changes in intensity. Four critical points along the inner core of each infrared (IR) brightness temperature (BT) profile were identified: coldest cloud top (CCT), first overshooting top (FOT), and lower (L45) and upper (U45) extent of the inner eyewall. Radial movement of the mean CCT point outward with increasing TC intensity, combined with subsequent warming of the mean L45 point with intensity, highlighted structure changes that are consistent with eye and eyewall development. When stratified by latitude and vertical wind shear, the CCT point moved radially outward for all cases, notably at higher intensities for lower-latitude TCs and at lower intensities for higher-latitude TCs. The majority of the warming of the L45 point with increasing intensity occurred for low-latitude and low-shear cases. Slopes of IR BT between the four critical points were statistically significantly negatively correlated with intensity, indicating that stronger (weaker) TCs had more (less) negative slopes of IR BT and more (less) vertical eyewall profiles. Furthermore, except in high-shear cases, the most negative correlations were found in the inner eyewall, consistent with results from recent studies based on radar reconnaissance data. Finally, 12-h changes in slope were found to lead 12-h changes in intensity most often at higher latitudes, providing evidence that changes in the secondary TC circulation may lead changes in the primary TC circulation for both strengthening and weakening TCs.

Corresponding author address: Bradford S. Barrett, 572C Holloway Rd., Annapolis, MD 21402. E-mail: bbarrett@usna.edu
Save