A Blended Soundproof-to-Compressible Numerical Model for Small- to Mesoscale Atmospheric Dynamics

Tommaso Benacchio FB Mathematik & Informatik, Freie Universität Berlin, Berlin, Germany

Search for other papers by Tommaso Benacchio in
Current site
Google Scholar
PubMed
Close
,
Warren P. O’Neill FB Mathematik & Informatik, Freie Universität Berlin, Berlin, Germany

Search for other papers by Warren P. O’Neill in
Current site
Google Scholar
PubMed
Close
, and
Rupert Klein FB Mathematik & Informatik, Freie Universität Berlin, Berlin, Germany

Search for other papers by Rupert Klein in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A blended model for atmospheric flow simulations is introduced that enables seamless transition from fully compressible to pseudo-incompressible dynamics. The model equations are written in nonperturbation form and integrated using a well-balanced second-order finite-volume discretization. The semi-implicit scheme combines an explicit predictor for advection with elliptic corrections for the pressure field. Compressibility is implemented in the elliptic equations through a diagonal term. The compressible/pseudo-incompressible transition is realized by suitably weighting the term and provides a mechanism for removing unwanted acoustic imbalances in compressible runs.

As the gradient of the pressure is used instead of the Exner pressure in the momentum equation, the influence of perturbation pressure on buoyancy must be included to ensure thermodynamic consistency. With this effect included, the thermodynamically consistent model is equivalent to Durran’s original pseudo-incompressible model, which uses the Exner pressure.

Numerical experiments demonstrate quadratic convergence and competitive solution quality for several benchmarks. With the inclusion of an additional buoyancy term required for thermodynamic consistency, the “pρ formulation” of the pseudo-incompressible model closely reproduces the compressible results.

The proposed unified approach offers a framework for models that are largely free of the biases that can arise when different discretizations are used. With data assimilation applications in mind, the seamless compressible/pseudo-incompressible transition mechanism is also shown to enable the flattening of acoustic imbalances in initial data for which balanced pressure distributions are unknown.

Corresponding author address: Tommaso Benacchio, Met Office, FitzRoy Road, Exeter EX1 3PB, United Kingdom. E-mail: tommaso.benacchio@metoffice.gov.uk

Abstract

A blended model for atmospheric flow simulations is introduced that enables seamless transition from fully compressible to pseudo-incompressible dynamics. The model equations are written in nonperturbation form and integrated using a well-balanced second-order finite-volume discretization. The semi-implicit scheme combines an explicit predictor for advection with elliptic corrections for the pressure field. Compressibility is implemented in the elliptic equations through a diagonal term. The compressible/pseudo-incompressible transition is realized by suitably weighting the term and provides a mechanism for removing unwanted acoustic imbalances in compressible runs.

As the gradient of the pressure is used instead of the Exner pressure in the momentum equation, the influence of perturbation pressure on buoyancy must be included to ensure thermodynamic consistency. With this effect included, the thermodynamically consistent model is equivalent to Durran’s original pseudo-incompressible model, which uses the Exner pressure.

Numerical experiments demonstrate quadratic convergence and competitive solution quality for several benchmarks. With the inclusion of an additional buoyancy term required for thermodynamic consistency, the “pρ formulation” of the pseudo-incompressible model closely reproduces the compressible results.

The proposed unified approach offers a framework for models that are largely free of the biases that can arise when different discretizations are used. With data assimilation applications in mind, the seamless compressible/pseudo-incompressible transition mechanism is also shown to enable the flattening of acoustic imbalances in initial data for which balanced pressure distributions are unknown.

Corresponding author address: Tommaso Benacchio, Met Office, FitzRoy Road, Exeter EX1 3PB, United Kingdom. E-mail: tommaso.benacchio@metoffice.gov.uk
Save
  • Achatz, U., R. Klein, and F. Senf, 2010: Gravity waves, scale asymptotics and the pseudo-incompressible equations. J. Fluid Mech., 663, 120147, doi:10.1017/S0022112010003411.

    • Search Google Scholar
    • Export Citation
  • Almgren, A. S., J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome, 1998: A conservative adaptive projection method for the variable density incompressible Navier–Stokes equations. J. Comput. Phys., 142, 146, doi:10.1006/jcph.1998.5890.

    • Search Google Scholar
    • Export Citation
  • Almgren, A. S., J. B. Bell, C. A. Rendleman, and M. Zingale, 2006a: Low Mach number modeling of type Ia supernovae. I. Hydrodynamics. Astrophys. J., 637, 922936, doi:10.1086/498426.

    • Search Google Scholar
    • Export Citation
  • Almgren, A. S., J. B. Bell, C. A. Rendleman, and M. Zingale, 2006b: Low Mach number modeling of type Ia supernovae. II. Energy evolution. Astrophys. J., 649, 927938, doi:10.1086/507089.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys., 17, 173265.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and C. S. Konor, 2009: Unification of the anelastic and quasi-hydrostatic systems of equations. Mon. Wea. Rev., 137, 710726, doi:10.1175/2008MWR2520.1.

    • Search Google Scholar
    • Export Citation
  • Bannon, P. R., 1996: On the anelastic approximation for a compressible atmosphere. J. Atmos. Sci., 53, 36183628, doi:10.1175/1520-0469(1996)053<3618:OTAAFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bell, J., L. Howell, and P. Colella, 1991: An efficient second-order projection method for viscous incompressible flow. Proc. 10th AIAA Computational Fluid Dynamics Conf., Honolulu, HI, AIAA, Vol. 360, doi:10.2514/6.1991-1560.

  • Bijl, H., and P. Wesseling, 1998: A unified method for computing incompressible and compressible flows in boundary-fitted coordinates. J. Comput. Phys., 141, 153173, doi:10.1006/jcph.1998.5914.

    • Search Google Scholar
    • Export Citation
  • Bonaventura, L., 2000: A semi-implicit semi-Lagrangian scheme using the height coordinate for a nonhydrostatic and fully elastic model of atmospheric flows. J. Comput. Phys., 158, 186213, doi:10.1006/jcph.1999.6414.

    • Search Google Scholar
    • Export Citation
  • Botta, N., R. Klein, S. Langenberg, and S. Lützenkirchen, 2004: Well balanced finite volume methods for nearly hydrostatic flows. J. Comput. Phys., 196, 539565, doi:10.1016/j.jcp.2003.11.008.

    • Search Google Scholar
    • Export Citation
  • Brdar, S., M. Baldauf, A. Dedner, and R. Klöfkorn, 2013: Comparison of dynamical cores for NWP models: Comparison of COSMO and Dune. Theor. Comput. Fluid Dyn., 27, 453472, doi:10.1007/s00162-012-0264-z.

    • Search Google Scholar
    • Export Citation
  • Casulli, V., and D. Greenspan, 1984: Pressure correction method for the numerical solution of transient compressible fluid flows. Int. J. Numer. Methods Fluids, 4, 10011012, doi:10.1002/fld.1650041102.

    • Search Google Scholar
    • Export Citation
  • Courant, R., K. Friedrichs, and H. Lewy, 1928: Über die partiellen Differenzengleichungen der mathematischen Physik (On the partial difference equations of mathematical physics). Math. Ann., 100, 3274, doi:10.1007/BF01448839.

    • Search Google Scholar
    • Export Citation
  • Cullen, M. J. P., 2007: Modelling atmospheric flows. Acta Numer., 16, 67154, doi:10.1017/S0962492906290019.

  • Davies, T., A. Staniforth, N. Wood, and J. Thuburn, 2003: Validity of anelastic and other equation sets as inferred from normal-mode analysis. Quart. J. Roy. Meteor. Soc., 129, 27612775, doi:10.1256/qj.02.1951.

    • Search Google Scholar
    • Export Citation
  • Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. White, and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 17591782, doi:10.1256/qj.04.101.

    • Search Google Scholar
    • Export Citation
  • Dukowicz, J. K., 2013: Evaluation of various approximations in ocean and atmospheric modeling based on an exact treatment of gravity wave dispersion. Mon. Wea. Rev., 141, 44874506, doi:10.1175/MWR-D-13-00148.1.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1989: Improving the anelastic approximation. J. Atmos. Sci., 46, 14531461, doi:10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 2008: A physically motivated approach for filtering acoustic waves from the equations governing compressible stratified flow. J. Fluid Mech., 601, 365379, doi:10.1017/S0022112008000608.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and P. N. Blossey, 2012: Implicit-explicit multistep methods for fast-wave–slow-wave problems. Mon. Wea. Rev., 140, 13071325, doi:10.1175/MWR-D-11-00088.1.

    • Search Google Scholar
    • Export Citation
  • Falgout, R. D., J. E. Jones, and U. M. Yang, 2006: The design and implementation of hypre, a library of parallel high performance preconditioners. Numerical Solution of Partial Differential Equations on Parallel Computers, A. Bruaset and A. Tveito, Eds., Lecture Notes in Computational Science and Engineering, Vol. 51, Springer, 267–294.

  • Gatti-Bono, C., and P. Colella, 2006: An anelastic allspeed projection method for gravitationally stratified flows. J. Comput. Phys., 216, 589615, doi:10.1016/j.jcp.2005.12.017.

    • Search Google Scholar
    • Export Citation
  • Giraldo, F. X., J. F. Kelly, and E. M. Costantinescu, 2013: Implicit-explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (NUMA). SIAM J. Sci. Comput., 35, B1162B1194, doi:10.1137/120876034.

    • Search Google Scholar
    • Export Citation
  • Gottlieb, S., C.-W. Shu, and E. Tadmor, 2001: Strong stability-preserving high-order time discretization methods. SIAM Rev., 43, 89112, doi:10.1137/S003614450036757X.

    • Search Google Scholar
    • Export Citation
  • Haack, J., S. Jin, and J.-G. Liu, 2012: An all-speed asymptotic-preserving method for the isentropic Euler and Navier–Stokes equations. Commun. Comput. Phys., 12, 955980.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and C. Schär, 2007: Predictability and error growth dynamics in cloud-resolving models. J. Atmos. Sci., 64, 44674478, doi:10.1175/2007JAS2143.1.

    • Search Google Scholar
    • Export Citation
  • Hornung, R. D., A. M. Wissink, and S. R. Kohn, 2006: Managing complex data and geometry in parallel structured AMR applications. Eng. Comput., 22, 181195, doi:10.1007/s00366-006-0038-6.

    • Search Google Scholar
    • Export Citation
  • Hortal, M., 2002: The development and testing of a new two-time-level semi-Lagrangian scheme (SETTLS) in the ECMWF forecast model. Quart. J. Roy. Meteor. Soc., 128, 16711687, doi:10.1002/qj.200212858314.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., J. P. Gerrity, and S. Nickovic, 2001: An alternative approach to nonhydrostatic modeling. Mon. Wea. Rev., 129, 11641178, doi:10.1175/1520-0493(2001)129<1164:AAATNM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jebens, S., O. Knoth, and R. Weiner, 2009: Explicit two-step peer methods for the compressible Euler equations. Mon. Wea. Rev., 137, 23802392, doi:10.1175/2008MWR2671.1.

    • Search Google Scholar
    • Export Citation
  • Jebens, S., O. Knoth, and R. Weiner, 2011: Partially implicit peer methods for the compressible Euler equations. J. Comput. Phys., 230, 49554974, doi:10.1016/j.jcp.2011.03.015.

    • Search Google Scholar
    • Export Citation
  • Kadioglu, S. Y., R. Klein, and M. L. Minion, 2008: A fourth-order auxiliary variable projection method for zero-Mach number gas dynamics. J. Comput. Phys., 227, 20122043, doi:10.1016/j.jcp.2007.10.008.

    • Search Google Scholar
    • Export Citation
  • Kelly, J. F., and F. X. Giraldo, 2012: Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: Limited-area mode. J. Comput. Phys., 231, 79888008, doi:10.1016/j.jcp.2012.04.042.

    • Search Google Scholar
    • Export Citation
  • Klein, R., 2000: Asymptotic analyses for atmospheric flows and the construction of asymptotically adaptive numerical methods. Z. Angew. Math. Mech., 80, 765777, doi:10.1002/1521-4001(200011)80:11/12<765::AID-ZAMM765>3.0.CO;2-1.

    • Search Google Scholar
    • Export Citation
  • Klein, R., 2009: Asymptotics, structure, and integration of sound-proof atmospheric flow equations. Theor. Comput. Fluid Dyn., 23, 161195, doi:10.1007/s00162-009-0104-y.

    • Search Google Scholar
    • Export Citation
  • Klein, R., 2010: Scale-dependent models for atmospheric flows. Annu. Rev. Fluid Mech., 42, 249274, doi:10.1146/annurev-fluid-121108-145537.

    • Search Google Scholar
    • Export Citation
  • Klein, R., and O. Pauluis, 2012: Thermodynamic consistency of a pseudoincompressible approximation for general equations of state. J. Atmos. Sci., 69, 961968, doi:10.1175/JAS-D-11-0110.1.

    • Search Google Scholar
    • Export Citation
  • Klein, R., N. Botta, L. Hofmann, A. Meister, C. Munz, S. Roller, and T. Sonar, 2001: Asymptotic adaptive methods for multiscale problems in fluid mechanics. J. Eng. Math., 39, 261343, doi:10.1023/A:1004844002437.

    • Search Google Scholar
    • Export Citation
  • Klein, R., U. Achatz, D. Bresch, O. M. Knio, and P. Smolarkiewicz, 2010: Regime of validity of soundproof atmospheric flow models. J. Atmos. Sci., 67, 32263237, doi:10.1175/2010JAS3490.1.

    • Search Google Scholar
    • Export Citation
  • Klein, R., T. Benacchio, and W. P. O’Neill, 2014: Using the sound-proof limit for balanced data initialization. Proc. ECMWF Seminar on Numerical Methods, Reading, United Kingdom, ECMWF, 227–236.

  • Konor, C. S., 2014: Design of a dynamical core based on the nonhydrostatic “unified system” of equations. Mon. Wea. Rev., 142, 364385, doi:10.1175/MWR-D-13-00187.1.

    • Search Google Scholar
    • Export Citation
  • Kwatra, N., J. Su, J. T. Grétarsson, and R. Fedkiw, 2009: A method for avoiding the acoustic time step restriction in compressible flow. J. Comput. Phys., 228, 41464161, doi:10.1016/j.jcp.2009.02.027.

    • Search Google Scholar
    • Export Citation
  • LeVeque, R. J., 2002: Finite Volume Methods for Hyperbolic Problems.Cambridge University Press, 580 pp.

  • Lipps, F. B., and R. S. Hemler, 1982: A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci., 39, 21922210, doi:10.1175/1520-0469(1982)039<2192:ASAODM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Munz, C.-D., S. Roller, R. Klein, and K. Geratz, 2003: The extension of incompressible flow solvers to the weakly compressible regime. Comput. Fluids, 32, 173196, doi:10.1016/S0045-7930(02)00010-5.

    • Search Google Scholar
    • Export Citation
  • Nonaka, A., A. S. Almgren, J. B. Bell, M. J. Lijewski, C. M. Malone, and M. Zingale, 2010: MAESTRO: An adaptive low Mach number hydrodynamics algorithm for stellar flows. Astrophys. J. Suppl. Ser., 188, 358, doi:10.1088/0067-0049/188/2/358.

    • Search Google Scholar
    • Export Citation
  • Prusa, J. M., and W. J. Gutowski, 2011: Multi-scale waves in sound-proof global simulations with EULAG. Acta Geophys., 59, 11351157, doi:10.2478/s11600-011-0050-0.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., 2005: Overview of global data assimilation developments in numerical weather-prediction centres. Quart. J. Roy. Meteor. Soc., 131, 32153233, doi:10.1256/qj.05.129.

    • Search Google Scholar
    • Export Citation
  • Reisner, J. M., A. Mousseau, A. A. Wyszogrodzki, and D. A. Knoll, 2005: An implicitly balanced hurricane model with physics-based preconditioning. Mon. Wea. Rev., 133, 10031022, doi:10.1175/MWR2901.1.

    • Search Google Scholar
    • Export Citation
  • Restelli, M., and F. X. Giraldo, 2009: A conservative discontinuous Galerkin semi-implicit formulation for the Navier–Stokes equations in nonhydrostatic mesoscale modeling. SIAM J. Sci. Comput., 31, 22312257, doi:10.1137/070708470.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., N. Botta, K. J. Geratz, and R. Klein, 1999: Extension of finite volume compressible flow solvers to multi-dimensional, variable density zero Mach number flows. J. Comput. Phys., 155, 248286, doi:10.1006/jcph.1999.6327.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 1994: Efficiency and accuracy of the Klemp–Wilhelmson time-splitting technique. Mon. Wea. Rev., 122, 26232630, doi:10.1175/1520-0493(1994)122<2623:EAAOTK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Smith, J. W., and P. R. Bannon, 2008: A comparison of compressible and anelastic models of deep dry convection. Mon. Wea. Rev., 136, 45554571, doi:10.1175/2008MWR2343.1.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and A. Dörnbrack, 2008: Conservative integrals of adiabatic Durran’s equations. Int. J. Numer. Methods Fluids, 56, 15131519, doi:10.1002/fld.1601.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and P. Charbonneau, 2013: EULAG, a computational model for multiscale flows: An MHD extension. J. Comput. Phys., 236, 608623, doi:10.1016/j.jcp.2012.11.008.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., C. Kühnlein, and N. Wedi, 2014: A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics. J. Comput. Phys., 263, 185205, doi:10.1016/j.jcp.2014.01.031.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., R. B. Wilhelmson, L. J. Wicker, J. R. Anderson, and K. K. Droegemeier, 1993: Numerical solutions of a non-linear density current: A benchmark solution and comparisons. Int. J. Numer. Methods Fluids, 17, 122, doi:10.1002/fld.1650170103.

    • Search Google Scholar
    • Export Citation
  • Szmelter, J., and P. K. Smolarkiewicz, 2011: An edge-based unstructured mesh framework for atmospheric flows. Comput. Fluids, 46, 455460, doi:10.1016/j.compfluid.2010.10.020.

    • Search Google Scholar
    • Export Citation
  • Vasil, G. M., D. Lecoanet, B. P. Brown, T. S. Wood, and E. G. Zweibel, 2013: Energy conservation and gravity waves in sound-proof treatments of stellar interiors. II. Lagrangian constrained analysis. Astrophys. J., 773, 169, doi:10.1088/0004-637X/773/2/169.

    • Search Google Scholar
    • Export Citation
  • Vater, S., 2013: A multigrid-based multiscale numerical scheme for shallow water flows at low Froude number. Ph.D. thesis, Freie Universität Berlin, Berlin, Germany, 179 pp. [Available online at http://edocs.fu-berlin.de/diss/receive/FUDISS_thesis_000000093897.]

  • Vater, S., and R. Klein, 2009: Stability of a Cartesian grid projection method for zero Froude number shallow water flows. Numer. Math., 113, 123161, doi:10.1007/s00211-009-0224-8.

    • Search Google Scholar
    • Export Citation
  • Weller, H., and A. Shahrokhi, 2014: Curl-free pressure gradients over orography in a solution of the fully compressible Euler equations with implicit treatment of acoustic and gravity waves. Mon. Wea. Rev., 142, 44394457, doi:10.1175/MWR-D-14-00054.1.

    • Search Google Scholar
    • Export Citation
  • Wong, M., W. C. Skamarock, P. H. Lauritzen, J. B. Klemp, and R. B. Stull, 2014: A compressible nonhydrostatic cell-integrated semi-Lagrangian semi-implicit solver (CSLAM-NH) with consistent and conservative transport. Mon. Wea. Rev., 142, 16691687, doi:10.1175/MWR-D-13-00210.1.

    • Search Google Scholar
    • Export Citation
  • Wood, N., and Coauthors, 2014: An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Quart. J. Roy. Meteor. Soc., 140, 15051520, doi:10.1002/qj.2235.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., D. Reinert, P. Rípodas, and M. Baldauf, 2014: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2378, in press.

    • Search Google Scholar
    • Export Citation
  • Zingale, M., and Coauthors, 2002: Mapping initial hydrostatic models in Godunov codes. Astrophys. J. Suppl. Ser., 143, 539565, doi:10.1086/342754.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2036 1537 174
PDF Downloads 371 53 3