• Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2012: Localization and sampling error correction in ensemble Kalman filter data assimilation. Mon. Wea. Rev., 140, 23592371, doi:10.1175/MWR-D-11-00013.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., , and L. Lei, 2013: Empirical localization of obervation impact in ensemble Kalman filters. Mon. Wea. Rev., 141, 41404153, doi:10.1175/MWR-D-12-00330.1.

    • Search Google Scholar
    • Export Citation
  • Bernardo, J. M., , and A. F. Smith, 1994: Bayesian Theory.John Wiley and Sons, 608 pp.

  • Bishop, C. H., , and D. Hodyss, 2007: Flow adaptive moderation of spurious ensemble correlations and its use in ensemble-based data assimilation. Quart. J. Roy. Meteor. Soc., 133, 20292044, doi:10.1002/qj.169.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., , B. J. Etherton, , and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436, doi:10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., , D. Hodyss, , P. Steinle, , H. Sims, , A. M. Clayton, , A. C. Lorenc, , D. M. Barker, , and M. Buehner, 2011: Efficient ensemble covariance localization in variational data assimilation. Mon. Wea. Rev., 139, 573580, doi:10.1175/2010MWR3405.1.

    • Search Google Scholar
    • Export Citation
  • Daley, R., , and R. Menard, 1993: Spectral characteristics of Kalman filter systems for atmospheric data assimilation. Mon. Wea. Rev., 121, 15541565, doi:10.1175/1520-0493(1993)121<1554:SCOKFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., , and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., , and C. Snyder, 2000: A hybrid ensemble Kalman filter–3D variational analysis scheme. Mon. Wea. Rev., 128, 29052919, doi:10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., , J. S. Whitaker, , and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790, doi:10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., , and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123137, doi:10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jun, M., , I. Szunyogh, , M. G. Genton, , F. Zhang, , and C. H. Bishop, 2011: A statistical investigation of sensitivity of ensemble-based Kalman filters to covariance filtering. Mon. Wea. Rev., 139, 30363051, doi:10.1175/2011MWR3577.1.

    • Search Google Scholar
    • Export Citation
  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. Trans. ASME J. Fluids Eng.,82D,3545, doi:10.1115/1.3662552.

  • Lei, L., , and J. Anderson, 2014: Comparisons of empirical localization techniques for serial ensemble Kalman filters in a simple atmospheric general circulation model. Mon. Wea. Rev., 142, 739754, doi:10.1175/MWR-D-13-00152.1.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 31833203, doi:10.1256/qj.02.132.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 2006: Predictability—A problem partly solved. Predictability of Weather and Climate, T. N. Palmer and R. Hagedorn, Eds., Cambridge University Press, 40–58.

  • Muirhead, R. J., 1982: Aspects of Multivariate Statistical Theory.John Wiley and Sons, 673 pp.

  • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus,56A, 415428, doi:10.1111/j.1600-0870.2004.00076.x.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., , and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677, doi:10.1175//2555.1.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., , J. L. Anderson, , C. H. Bishop, , T. M. Hamill, , and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131, 14851490, doi:10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , D. M. Barker, , C. Snyder, , and T. M. Hamill, 2008a: A hybrid ETKF–3DVar data assimilation scheme for the WRF model. Part I: Observing system simulation experiment. Mon. Wea. Rev., 136, 51165131, doi:10.1175/2008MWR2444.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , D. M. Barker, , C. Snyder, , and T. M. Hamill, 2008b: A hybrid ETKF–3DVar data assimilation scheme for the WRF model. Part II: Real observation experiments. Mon. Wea. Rev., 136, 51325147, doi:10.1175/2008MWR2445.1.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., , and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, doi:10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , C. Snyder, , and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 12381253, doi:10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , Z. Meng, , and A. Aksoy, 2006: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiments. Mon. Wea. Rev., 134, 722736, doi:10.1175/MWR3101.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , M. Zhang, , and J. A. Hansen, 2009: Coupling ensemble Kalman filter with four-dimensional variational data assimilation. Adv. Atmos. Sci., 26, 18, doi:10.1007/s00376-009-0001-8.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , M. Zhang, , and J. Poterjoy, 2013: E3DVar: Coupling an ensemble Kalman filter with three-dimensional variational data assimilation in a limited-area weather prediction model and comparison to E4DVar. Mon. Wea. Rev., 141, 900–917, doi:10.1175/MWR-D-12-00075.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15 15 2
PDF Downloads 8 8 1

A Probabilistic Approach to Adaptive Covariance Localization for Serial Ensemble Square Root Filters

View More View Less
  • 1 Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania
  • 2 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions
Restricted access

Abstract

This study proposes a variational approach to adaptively determine the optimum radius of influence for ensemble covariance localization when uncorrelated observations are assimilated sequentially. The covariance localization is commonly used by various ensemble Kalman filters to limit the impact of covariance sampling errors when the ensemble size is small relative to the dimension of the state. The probabilistic approach is based on the premise of finding an optimum localization radius that minimizes the distance between the Kalman update using the localized sampling covariance versus using the true covariance, when the sequential ensemble Kalman square root filter method is used. The authors first examine the effectiveness of the proposed method for the cases when the true covariance is known or can be approximated by a sufficiently large ensemble size. Not surprisingly, it is found that the smaller the true covariance distance or the smaller the ensemble, the smaller the localization radius that is needed. The authors further generalize the method to the more usual scenario that the true covariance is unknown but can be represented or estimated probabilistically based on the ensemble sampling covariance. The mathematical formula for this probabilistic and adaptive approach with the use of the Jeffreys prior is derived. Promising results and limitations of this new method are discussed through experiments using the Lorenz-96 system.

Corresponding author address: Fuqing Zhang, Department of Meteorology, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: fzhang@psu.edu

This article is included in the Sixth WMO Data Assimilation Symposium Special Collection.

Abstract

This study proposes a variational approach to adaptively determine the optimum radius of influence for ensemble covariance localization when uncorrelated observations are assimilated sequentially. The covariance localization is commonly used by various ensemble Kalman filters to limit the impact of covariance sampling errors when the ensemble size is small relative to the dimension of the state. The probabilistic approach is based on the premise of finding an optimum localization radius that minimizes the distance between the Kalman update using the localized sampling covariance versus using the true covariance, when the sequential ensemble Kalman square root filter method is used. The authors first examine the effectiveness of the proposed method for the cases when the true covariance is known or can be approximated by a sufficiently large ensemble size. Not surprisingly, it is found that the smaller the true covariance distance or the smaller the ensemble, the smaller the localization radius that is needed. The authors further generalize the method to the more usual scenario that the true covariance is unknown but can be represented or estimated probabilistically based on the ensemble sampling covariance. The mathematical formula for this probabilistic and adaptive approach with the use of the Jeffreys prior is derived. Promising results and limitations of this new method are discussed through experiments using the Lorenz-96 system.

Corresponding author address: Fuqing Zhang, Department of Meteorology, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: fzhang@psu.edu

This article is included in the Sixth WMO Data Assimilation Symposium Special Collection.

Save