• Altaf, U. M., , T. Butler, , X. Luo, , C. Dawson, , T. Mayo, , and H. Hoteit, 2013: Improving short-range ensemble Kalman storm surge forecasting using robust adaptive inflation. Mon. Wea. Rev., 141, 27052720, doi:10.1175/MWR-D-12-00310.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634642, doi:10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A, 210224, doi:10.1111/j.1600-0870.2006.00216.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, doi:10.1111/j.1600-0870.2008.00361.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., , and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 27412758, doi:10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., , and D. Hodyss, 2007: Flow-adaptive moderation of spurious ensemble correlations and its use in ensemble-based data assimilation. Quart. J. Roy. Meteor. Soc., 133, 20292044, doi:10.1002/qj.169.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., , and D. Hodyss, 2009a: Ensemble covariances adaptively localized with ECO-RAP. Part 1: Tests on simple error models. Tellus, 61A, 8496, doi:10.1111/j.1600-0870.2008.00371.x.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., , and D. Hodyss, 2009b: Ensemble covariances adaptively localized with ECO-RAP. Part 2: A strategy for the atmosphere. Tellus, 61A, 97111, doi:10.1111/j.1600-0870.2008.00372.x.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., , and D. Hodyss, 2011: Adaptive ensemble covariance localization in ensemble 4D-VAR state estimation. Mon. Wea. Rev., 139, 12411255, doi:10.1175/2010MWR3403.1.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., , B. J. Etherton, , and S. J. Majumdar, 2001: Adaptive sampling with ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436, doi:10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and Coauthors, 2012: Joint GODAE OceanView—WGNE workshop on short- to medium-range coupled prediction for the atmosphere-wave-sea-ice-ocean: Status, needs and challenges: Data assimilation—Whitepaper. GODAE OceanView Rep., 14 pp. [Available online at https://www.godae-oceanview.org/outreach/meetings-workshops/task-team-meetings/coupled-prediction-workshop-gov-wgne-2013/white-papers/.]

  • Burgers, G., , P. J. van Leeuwen, , and G. Evensen, 1998: On the analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 17191724, doi:10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clayton, A., , A. Lorenc, , and D. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 14451461, doi:10.1002/qj.2054.

    • Search Google Scholar
    • Export Citation
  • Cooper, M., , and K. Haines, 1996: Altimetric assimilation with water property conservation. J. Geophys. Res., 101, 10591077, doi:10.1029/95JC02902.

    • Search Google Scholar
    • Export Citation
  • Counillon, F., , and L. Bertino, 2009: Ensemble optimal interpolation: Multivariate properties in the Gulf of Mexico. Tellus, 61A, 296308, doi:10.1111/j.1600-0870.2008.00383.x.

    • Search Google Scholar
    • Export Citation
  • Dawson, C., , S. Sun, , and M. F. Wheeler, 2004: Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Eng., 193, 25652580, doi:10.1016/j.cma.2003.12.059.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Fehlberg, E., 1970: Classical fourth and lower order Runge-Kutta formulas with stepsize control and their application to heat transfer problems (in German). Computing, 6, 6171, doi:10.1007/BF02241732.

    • Search Google Scholar
    • Export Citation
  • Gordon, N. J., , D. J. Salmond, , and A. F. M. Smith, 1993: Novel approach to nonlinear and non-Gaussian Bayesian state estimation. IEE Proc. F Radar Signal Process., 140, 107113, doi:10.1049/ip-f-2.1993.0015.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., , and J. S. Whitaker, 2011: What constrains spread growth in forecasts initialized from ensemble Kalman filters? Mon. Wea. Rev., 139, 117131, doi:10.1175/2010MWR3246.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., , J. S. Whitaker, , and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790, doi:10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harlim, J., , A. Mahdi, , and A. J. Majda, 2014: An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models. J. Comput. Phys., 257, 782812, doi:10.1016/j.jcp.2013.10.025.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., , and D. T. Pham, 2004: An adaptively reduced-order extended Kalman filter for data assimilation in the tropical Pacific. J. Mar. Syst., 45, 173188, doi:10.1016/j.jmarsys.2003.11.004.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., , D. T. Pham, , and J. Blum, 2002: A simplified reduced order Kalman filtering and application to altimetric data assimilation in tropical Pacific. J. Mar. Syst., 36, 101127, doi:10.1016/S0924-7963(02)00129-X.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., , X. Luo, , and D. T. Pham, 2012: Particle Kalman filtering: An optimal nonlinear framework for ensemble Kalman filters. Mon. Wea. Rev., 140, 528542, doi:10.1175/2011MWR3640.1.

    • Search Google Scholar
    • Export Citation
  • Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, 400 pp.

  • Kuhl, D. D., , T. E. Rosmond, , C. H. Bishop, , J. McLay, , and N. L. Baker, 2013: Comparison of hybrid ensemble/4DVar and 4DVar within the NAVDAS-AR data assimilation framework. Mon. Wea. Rev., 141, 27402758, doi:10.1175/MWR-D-12-00182.1.

    • Search Google Scholar
    • Export Citation
  • Livings, D. M., , S. L. Dance, , and N. K. Nichols, 2008: Unbiased ensemble square root filters. Physica D, 237, 10211028, doi:10.1016/j.physd.2008.01.005.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 2006: Predictability—A problem partly solved. Predictability of Weather and Climate, T. Palmer and R. Hagedorn, Eds., Cambridge University Press, 40–58.

  • Lorenz, E. N., , and K. A. Emanuel, 1998: Optimal sites for supplementary weather observations: Simulation with a small model. J. Atmos. Sci., 55, 399414, doi:10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, X., , and I. M. Moroz, 2009: Ensemble Kalman filter with the unscented transform. Physica D, 238, 549562, doi:10.1016/j.physd.2008.12.003.

    • Search Google Scholar
    • Export Citation
  • Luo, X., , and I. Hoteit, 2011: Robust ensemble filtering and its relation to covariance inflation in the ensemble Kalman filter. Mon. Wea. Rev., 139, 39383953, doi:10.1175/MWR-D-10-05068.1.

    • Search Google Scholar
    • Export Citation
  • Luo, X., , and I. Hoteit, 2012: Ensemble Kalman filtering with residual nudging. Tellus,64A, 17 130, doi:10.3402/tellusa.v64i0.17130.

  • Luo, X., , and I. Hoteit, 2013: Covariance inflation in the ensemble Kalman filter: A residual nudging perspective and some implications. Mon. Wea. Rev., 141, 33603368, doi:10.1175/MWR-D-13-00067.1.

    • Search Google Scholar
    • Export Citation
  • Luo, X., , and H. Hoteit, 2014a: Ensemble Kalman filtering with residual nudging: An extension to state estimation problems with nonlinear observation operators. Mon. Wea. Rev., 142, 3696–3712, doi:10.1175/MWR-D-13-00328.1.

    • Search Google Scholar
    • Export Citation
  • Luo, X., , and I. Hoteit, 2014b: Efficient particle filtering through residual nudging. Quart. J. Roy. Meteor. Soc., 140, 557572, doi:10.1002/qj.2152.

    • Search Google Scholar
    • Export Citation
  • Luo, X., , I. M. Moroz, , and I. Hoteit, 2010: Scaled unscented transform Gaussian sum filter: Theory and application. Physica D, 239, 684701, doi:10.1016/j.physd.2010.01.022.

    • Search Google Scholar
    • Export Citation
  • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415428, doi:10.1111/j.1600-0870.2004.00076.x.

    • Search Google Scholar
    • Export Citation
  • Penny, S. G., 2014: The hybrid local ensemble transform Kalman filter. Mon. Wea. Rev., 142, 2139–2149, doi:10.1175/MWR-D-13-00131.1.

  • Petihakis, G., , G. Triantafyllou, , K. Tsiaras, , G. Korres, , A. Pollani, , and I. Hoteit, 2009: Eastern Mediterranean biogeochemical flux model—Simulations of the pelagic ecosystem. Ocean Sci., 5, 2946, doi:10.5194/os-5-29-2009.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., , and C. H. Bishop, 2012: Nonlinear parameter estimation: Comparison of an ensemble Kalman smoother with a Markov chain Monte Carlo algorithm. Mon. Wea. Rev., 140, 19571974, doi:10.1175/MWR-D-11-00242.1.

    • Search Google Scholar
    • Export Citation
  • Russell, G., , J. Miller, , and D. Rind, 1995: A coupled atmosphere-ocean model for transient climate change studies. Atmos.–Ocean, 33, 683730, doi:10.1080/07055900.1995.9649550.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 2185–2208, doi:10.1175/JCLI-D-12-00823.1.

  • Sherman, J., , and W. J. Morrison, 1950: Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Stat., 21, 124127, doi:10.1214/aoms/1177729893.

    • Search Google Scholar
    • Export Citation
  • Simon, D., 2006: Optimal State Estimation: Kalman, H-Infinity, and Nonlinear Approaches. Wiley-Interscience, 552 pp.

  • Tippett, M. K., , J. L. Anderson, , C. H. Bishop, , T. M. Hamill, , and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131, 14851490, doi:10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Triantafyllou, G., , I. Hoteit, , X. Luo, , K. Tsiaras, , and G. Petihakis, 2013: Assessing a robust ensemble-based Kalman filter for efficient ecosystem data assimilation of the Cretan Sea. J. Mar. Syst., 125, 90100, doi:10.1016/j.jmarsys.2012.12.006.

    • Search Google Scholar
    • Export Citation
  • Van Leeuwen, P. J., 2009: Particle filtering in geophysical systems. Mon. Wea. Rev., 137, 40894114, doi:10.1175/2009MWR2835.1.

  • Wang, X., , C. H. Bishop, , and S. J. Julier, 2004: Which is better, an ensemble of positive–negative pairs or a centered simplex ensemble. Mon. Wea. Rev., 132, 15901605, doi:10.1175/1520-0493(2004)132<1590:WIBAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , T. M. Hamill, , J. S. Whitaker, , and C. H. Bishop, 2007: A comparison of hybrid ensemble transform Kalman filter–optimum interpolation and ensemble square root filter analysis schemes. Mon. Wea. Rev., 135, 10551076, doi:10.1175/MWR3307.1.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., , and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, doi:10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., , M. Harrison, , A. Rosati, , and A. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135, 35413564, doi:10.1175/MWR3466.1.

    • Search Google Scholar
    • Export Citation
  • Zupanski, M., 2005: Maximum likelihood ensemble filter: Theoretical aspects. Mon. Wea. Rev., 133, 17101726, doi:10.1175/MWR2946.1.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 17 17 6
PDF Downloads 13 13 5

Ensemble Kalman Filtering with a Divided State-Space Strategy for Coupled Data Assimilation Problems

View More View Less
  • 1 International Research Institute of Stavanger, Bergen, Norway
  • 2 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
© Get Permissions
Restricted access

Abstract

This study considers the data assimilation problem in coupled systems, which consists of two components (subsystems) interacting with each other through certain coupling terms. A straightforward way to tackle the assimilation problem in such systems is to concatenate the states of the subsystems into one augmented state vector, so that a standard ensemble Kalman filter (EnKF) can be directly applied. This work presents a divided state-space estimation strategy, in which data assimilation is carried out with respect to each individual subsystem, involving quantities from the subsystem itself and correlated quantities from other coupled subsystems. On top of the divided state-space estimation strategy, the authors also consider the possibility of running the subsystems separately. Combining these two ideas, a few variants of the EnKF are derived. The introduction of these variants is mainly inspired by the current status and challenges in coupled data assimilation problems and thus might be of interest from a practical point of view. Numerical experiments with a multiscale Lorenz 96 model are conducted to evaluate the performance of these variants against that of the conventional EnKF. In addition, specific for coupled data assimilation problems, two prototypes of extensions of the presented methods are also developed in order to achieve a trade-off between efficiency and accuracy.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-13-00402.s1.

Corresponding author address: Ibrahim Hoteit, 4700 King Abdullah University of Science and Technology, Al-Khwarizmi Building (1), Room 4415, Thuwal 23955-6900, Saudi Arabia. E-mail: ibrahim.hoteit@kaust.edu.sa

Abstract

This study considers the data assimilation problem in coupled systems, which consists of two components (subsystems) interacting with each other through certain coupling terms. A straightforward way to tackle the assimilation problem in such systems is to concatenate the states of the subsystems into one augmented state vector, so that a standard ensemble Kalman filter (EnKF) can be directly applied. This work presents a divided state-space estimation strategy, in which data assimilation is carried out with respect to each individual subsystem, involving quantities from the subsystem itself and correlated quantities from other coupled subsystems. On top of the divided state-space estimation strategy, the authors also consider the possibility of running the subsystems separately. Combining these two ideas, a few variants of the EnKF are derived. The introduction of these variants is mainly inspired by the current status and challenges in coupled data assimilation problems and thus might be of interest from a practical point of view. Numerical experiments with a multiscale Lorenz 96 model are conducted to evaluate the performance of these variants against that of the conventional EnKF. In addition, specific for coupled data assimilation problems, two prototypes of extensions of the presented methods are also developed in order to achieve a trade-off between efficiency and accuracy.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-13-00402.s1.

Corresponding author address: Ibrahim Hoteit, 4700 King Abdullah University of Science and Technology, Al-Khwarizmi Building (1), Room 4415, Thuwal 23955-6900, Saudi Arabia. E-mail: ibrahim.hoteit@kaust.edu.sa

Supplementary Materials

    • Supplemental Materials (PDF 42.17 KB)
Save