• Ashcroft, P., , and F. J. Wentz, cited 2013: AMSR-E/Aqua L2A global swath spatially-resampled brightness temperatures, version 3. National Snow and Ice Data Center, NASA DAAC, Boulder, CO, doi:10.5067/AMSR-E/AE_L2A.003.

  • Bell, M. M., , and M. T. Montgomery, 2010: Sheared deep vortical convection in pre-depression Hagupit during TCS08. Geophys. Res. Lett.,37, L06802, doi:10.1029/2009GL042313.

  • Bister, M., , and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 26622682, doi:10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., , M. T. Montgomery, , K. J. Mallen, , and P. D. Reasor, 2010: Simulation and interpretation of the genesis of Tropical Storm Gert (2005) as part of the NASA Tropical Cloud Systems and Processes experiment. J. Atmos. Sci., 67, 9991025, doi:10.1175/2009JAS3140.1.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and Coauthors, 2013: NASA’s Genesis and Rapid Intensification Processes (GRIP) field experiment. Bull. Amer. Meteor. Soc., 94, 345363, doi:10.1175/BAMS-D-11-00232.1.

    • Search Google Scholar
    • Export Citation
  • Chang, A. T. C., , L. S. Chiu, , and G. Yang, 1995: Diurnal cycle of oceanic precipitation from SSM/I data. Mon. Wea. Rev., 123, 33713380, doi:10.1175/1520-0493(1995)123<3371:DCOOPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chronis, T. G., , E. R. Williams, , E. N. Anagnostou, , and W. A. Petersen, 2007: African lightning: Indicator of tropical Atlantic cyclone formation. Eos, Trans. Amer. Geophys. Union, 88, 397398, doi:10.1029/2007EO400001.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , and D. A. Ahijevych, 2012: Mesoscale structural evolution of three tropical weather systems observed during PREDICT. J. Atmos. Sci., 69, 12841305, doi:10.1175/JAS-D-11-0225.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , and D. A. Ahijevych, 2013: Thermodynamic environments of deep convection in Atlantic tropical disturbances. J. Atmos. Sci., 70, 19121928, doi:10.1175/JAS-D-12-0278.1.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., , M. T. Montgomery, , and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, doi:10.5194/acp-9-5587-2009.

    • Search Google Scholar
    • Export Citation
  • Fritz, C., , and Z. Wang, 2013: A numerical study of the impacts of dry air on tropical cyclone formation: A development case and a nondevelopment case. J. Atmos. Sci., 70, 91111, doi:10.1175/JAS-D-12-018.1.

    • Search Google Scholar
    • Export Citation
  • Fu, B., , M. S. Peng, , T. Li, , and D. E. Stevens, 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part II: Western North Pacific. Mon. Wea. Rev., 140, 10671080, doi:10.1175/2011MWR3618.1.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbance and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1975: Tropical cyclone genesis. Dept. of Atmos. Science Paper 232, Colorado State University, 121 pp.

  • Halverson, J., and Coauthors, 2007: NASA’s Tropical Cloud Systems and Processes experiment. Bull. Amer. Meteor. Soc., 88, 867882, doi:10.1175/BAMS-88-6-867.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., , R. L. Elsberry, , and J. C. L. Chan, 1996a: Transformation of a large monsoon depression to a tropical storm during TCM-93. Mon. Wea. Rev., 124, 26252643, doi:10.1175/1520-0493(1996)124<2625:TOALMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., , M. S. Kalafsky, , and R. L. Elsberry, 1996b: Environmental conditions prior to formation of a midget tropical cyclone during TCM-93. Mon. Wea. Rev., 124, 16931710, doi:10.1175/1520-0493(1996)124<1693:ECPTFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., , M. T. Montgomery, , and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, doi:10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hopsch, S. B., , C. D. Thorncroft, , and K. R. Tyle, 2010: Analysis of African easterly wave structures and their role in influencing tropical cyclogenesis. Mon. Wea. Rev., 138, 13991419, doi:10.1175/2009MWR2760.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , W.-C. Lee, , and M. M. Bell, 2009: Convective contribution to the genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137, 27782800, doi:10.1175/2009MWR2727.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., , and E. M. Ramirez, 2013: Necessary conditions for tropical cyclone rapid intensification as derived from 11 years of TRMM data. J. Climate, 26, 64596470, doi:10.1175/JCLI-D-12-00432.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., , C. Liu, , and E. J. Zipser, 2011: A TRMM-based tropical cyclone cloud and precipitation feature database. J. Appl. Meteor. Climatol., 50, 12551274, doi:10.1175/2011JAMC2662.1.

    • Search Google Scholar
    • Export Citation
  • Kerns, B., , and E. Zipser, 2009: Four years of tropical ERA-40 vorticity maxima tracks. Part II: Differences between developing and nondeveloping disturbances. Mon. Wea. Rev., 137, 25762591, doi:10.1175/2008MWR2545.1.

    • Search Google Scholar
    • Export Citation
  • Kerns, B., , and S. S. Chen, 2013: Cloud clusters and tropical cyclogenesis: Developing and nondeveloping systems and their large-scale environment. Mon. Wea. Rev., 141, 192210, doi:10.1175/MWR-D-11-00239.1.

    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., 2013: An investigation of composite dropsonde profiles for developing and nondeveloping tropical waves during the 2010 PREDICT field campaign. J. Atmos. Sci., 70, 542558, doi:10.1175/JAS-D-12-052.1.

    • Search Google Scholar
    • Export Citation
  • Leary, L. A., , and E. A. Ritchie, 2009: Lightning flash rates as an indicator of tropical cyclone genesis in the eastern North Pacific. Mon. Wea. Rev., 137, 34563470, doi:10.1175/2009MWR2822.1.

    • Search Google Scholar
    • Export Citation
  • Lee, C. S., 1989: Observational analysis of tropical cyclogenesis in the western North Pacific. Part I: Structural evolution of cloud clusters. J. Atmos. Sci., 46, 25802598, doi:10.1175/1520-0469(1989)046<2580:OAOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leppert, K. D., , D. J. Cecil, , and W. A. Petersen, 2013a: Relation between tropical easterly waves, convection, and tropical cyclogenesis: A Lagrangian perspective. Mon. Wea. Rev., 141, 26492668, doi:10.1175/MWR-D-12-00217.1.

    • Search Google Scholar
    • Export Citation
  • Leppert, K. D., , W. A. Petersen, , and D. J. Cecil, 2013b: Electrically active convection in tropical easterly waves and implications for tropical cyclogenesis in the Atlantic and east Pacific. Mon. Wea. Rev., 141, 542556, doi:10.1175/MWR-D-12-00174.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , E. J. Zipser, , D. J. Cecil, , S. W. Nesbitt, , and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728, doi:10.1175/2008JAMC1890.1.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., , and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 11321151, doi:10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Melhauser, C., , and F. Zhang, 2014: Diurnal radiation cycle impact on the pregenesis environment of Hurricane Karl (2010). J. Atmos. Sci., 71, 12411259, doi:10.1175/JAS-D-13-0116.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , D. Vollaro, , and K. L. Corbosiero, 2004: Tropical cyclone formation in a sheared environment: A case study. J. Atmos. Sci., 61, 24932509, doi:10.1175/JAS3291.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , P. Dodge, , D. Vollaro, , K. L. Corbosiero, , and F. Marks Jr., 2006: Mesoscale aspects of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 63, 341354, doi:10.1175/JAS3591.1.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., , and M. T. Montgomery, 2000: Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model. J. Atmos. Sci., 57, 33663387, doi:10.1175/1520-0469(2000)057<3366:TCEVPV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , and J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. J. Atmos. Sci., 55, 31763207, doi:10.1175/1520-0469(1998)055<3176:TCVCFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , and R. K. Smith, 2011: The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS08) field experiment—Part 2: Observations of the convective environment. Atmos. Chem. Phys., 11, 31 11531 136, doi:10.5194/acpd-11-31115-2011.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , M. E. Nicholls, , T. A. Cram, , and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, doi:10.1175/JAS3604.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , Z. Wang, , and T. J. Dunkerton, 2010: Coarse, intermediate and high resolution numerical simulations of the transition of a tropical wave critical layer to a tropical storm. Atmos. Chem. Phys., 10, 10 80310 827, doi:10.5194/acp-10-10803-2010.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and Coauthors, 2012: The Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) Experiment: Scientific basis, new analysis tools, and some first results. Bull. Amer. Meteor. Soc., 93, 153172, doi:10.1175/BAMS-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., , and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, doi:10.1175/1520-0442-16.10.1456.

    • Search Google Scholar
    • Export Citation
  • Nolan, D., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241266.

  • Ooyama, K. V., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60, 369379.

  • Pytharoulis, I., , and C. D. Thorncroft, 1999: The low-level structure of African easterly waves in 1995. Mon. Wea. Rev., 127, 22662280, doi:10.1175/1520-0493(1999)127<2266:TLLSOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., , and D. S. Nolan, 2012: The effects of vertical shear orientation on tropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 138, 10351054, doi:10.1002/qj.977.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , and S. L. Sessions, 2007: Evolution of convection during tropical cyclogenesis. Geophys. Res. Lett.,34, L06811, doi:10.1029/2006GL028607.

  • Raymond, D. J., , and C. López Carrillo, 2011: The vorticity budget of developing Typhoon Nuri (2008). Atmos. Chem. Phys., 11, 147163, doi:10.5194/acp-11-147-2011.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , C. López Carrillo, , and L. López Cavazos, 1998: Case-studies of developing east Pacific easterly waves. Quart. J. Roy. Meteor. Soc., 124, 20052034, doi:10.1002/qj.49712455011.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , S. L. Sessions, , and C. López Carrillo, 2011: Thermodynamics of tropical cyclogenesis in the northwest Pacific. J. Geophys. Res.,116, D18101, doi:10.1029/2011JD015624.

  • Reasor, P. D., , M. T. Montgomery, , and L. F. Bosart, 2005: Mesoscale observations of the genesis of Hurricane Dolly (1996). J. Atmos. Sci., 62, 31513171, doi:10.1175/JAS3540.1.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., , D. C. Norquist, , and E. E. Recker, 1977: The structure and properties of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 317333, doi:10.1175/1520-0493(1977)105<0317:TSAPOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1954: Tropical Meteorology. McGraw-Hill, 392 pp.

  • Ritchie, E. A., , and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 13771396, doi:10.1175/1520-0493(1997)125<1377:SIDTFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., and Coauthors, 2006: The Intensity Forecast Experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bull. Amer. Meteor. Soc., 87, 15231537, doi:10.1175/BAMS-87-11-1523.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., and Coauthors, 2013: NOAA’s Hurricane Intensity Forecasting Experiment: A progress report. Bull. Amer. Meteor. Soc., 94, 859882, doi:10.1175/BAMS-D-12-00089.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., , E. Ritchie, , G. J. Holland, , J. Halverson, , and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125, 26432661, doi:10.1175/1520-0493(1997)125<2643:MIITCG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., , J. W. Nielsen-Gammon, , and S. E. Allen, 2006: The multiple-vortex nature of tropical cyclogenesis. Mon. Wea. Rev., 134, 17961814, doi:10.1175/MWR3165.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., , and M. T. Montgomery, 2012: Observations of the convective environment in developing and non-developing tropical disturbances. Quart. J. Roy. Meteor. Soc., 138, 17211739, doi:10.1002/qj.1910.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., , H. M. Goodman, , and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273, doi:10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., , and K. I. Hodges, 2001: African easterly wave variability and its relationship to Atlantic tropical cyclone activity. J. Climate, 14, 11661179, doi:10.1175/1520-0442(2001)014<1166:AEWVAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2012: Thermodynamic aspects of tropical cyclone formation. J. Atmos. Sci., 69, 24332451, doi:10.1175/JAS-D-11-0298.1.

  • Wang, Z., , M. T. Montgomery, , and T. J. Dunkerton, 2010: Genesis of pre–Hurricane Felix (2007). Part I: The role of the easterly wave critical layer. J. Atmos. Sci., 67, 17111729, doi:10.1175/2009JAS3420.1.

    • Search Google Scholar
    • Export Citation
  • Zawislak, J., , and E. J. Zipser, 2014: Analysis of the thermodynamic properties of developing and nondeveloping tropical disturbances using a comprehensive dropsonde dataset. Mon. Wea. Rev., 142, 1250–1264, doi:10.1175/MWR-D-13-00253.1.

    • Search Google Scholar
    • Export Citation
  • Zehr, R. M., 1992: Tropical cyclogenesis in the western North Pacific. NOAA Tech. Rep. NESDIS 61, 181 pp.

  • Zhang, D.-L., , and L. Zhu, 2012: Roles of upper-level processes in tropical cyclogenesis. Geophys. Res. Lett.,39, L17804, doi:10.1029/2012GL053140.

  • Zipser, E. J., , and C. Gautier, 1978: Mesoscale events within a GATE tropical depression. Mon. Wea. Rev., 106, 789805, doi:10.1175/1520-0493(1978)106<0789:MEWAGT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 13 13 5
PDF Downloads 8 8 5

A Multisatellite Investigation of the Convective Properties of Developing and Nondeveloping Tropical Disturbances

View More View Less
  • 1 Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
© Get Permissions
Restricted access

Abstract

A comprehensive passive microwave satellite dataset is analyzed to quantify and compare the time evolution of convective properties of the pregenesis stage of developing disturbances (12 cases) and nondeveloping disturbances (3 cases), to determine whether the properties within the day prior to formation are unique, and to determine whether there is a credible connection between convection and the organization of the incipient circulation. Cases examined were the focus of recent (since 2005) field programs, and include those investigated during the triagency field programs in the Atlantic during 2010 [NASA’s Genesis and Rapid Intensification Processes (GRIP) project, the National Science Foundation (NSF)/NCAR Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) program, and NOAA’s Intensity Forecasting Experiment (IFEX)]. Among the properties examined (raining area, intensity, areal coverage of “strong” and “intense” convection, frequency, and proximity to the disturbance center), the results indicate that the area and frequency of rainfall within 3° are distinguishably greater in developing disturbances. Except for the fact it occurs in a more organized disturbance, there does not appear to be anything special about strong [polarization corrected temperature (PCT) ≤ 210 K] or intense (PCT ≤ 160 K) convection occurring in the day before genesis. Strong and intense convection events are observed throughout the pregenesis stage, do not necessarily increase (in intensity and area) as genesis nears, and are not necessarily very close (within 1°) to the center within a day of genesis. Likewise, while the areal coverage of strong and intense convection during the pregenesis stage is typically greater in developing disturbances, the overall intensity of convection in nondeveloping disturbances is comparable to the developing cases examined.

Corresponding author address: Jonathan Zawislak, Dept. of Atmospheric Sciences, University of Utah, 135 South 1460 East, Rm. 819, WBB, Salt Lake City, UT, 84112. E-mail: jon.zawislak@utah.edu

Abstract

A comprehensive passive microwave satellite dataset is analyzed to quantify and compare the time evolution of convective properties of the pregenesis stage of developing disturbances (12 cases) and nondeveloping disturbances (3 cases), to determine whether the properties within the day prior to formation are unique, and to determine whether there is a credible connection between convection and the organization of the incipient circulation. Cases examined were the focus of recent (since 2005) field programs, and include those investigated during the triagency field programs in the Atlantic during 2010 [NASA’s Genesis and Rapid Intensification Processes (GRIP) project, the National Science Foundation (NSF)/NCAR Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) program, and NOAA’s Intensity Forecasting Experiment (IFEX)]. Among the properties examined (raining area, intensity, areal coverage of “strong” and “intense” convection, frequency, and proximity to the disturbance center), the results indicate that the area and frequency of rainfall within 3° are distinguishably greater in developing disturbances. Except for the fact it occurs in a more organized disturbance, there does not appear to be anything special about strong [polarization corrected temperature (PCT) ≤ 210 K] or intense (PCT ≤ 160 K) convection occurring in the day before genesis. Strong and intense convection events are observed throughout the pregenesis stage, do not necessarily increase (in intensity and area) as genesis nears, and are not necessarily very close (within 1°) to the center within a day of genesis. Likewise, while the areal coverage of strong and intense convection during the pregenesis stage is typically greater in developing disturbances, the overall intensity of convection in nondeveloping disturbances is comparable to the developing cases examined.

Corresponding author address: Jonathan Zawislak, Dept. of Atmospheric Sciences, University of Utah, 135 South 1460 East, Rm. 819, WBB, Salt Lake City, UT, 84112. E-mail: jon.zawislak@utah.edu
Save