• Aksoy, A., , D. C. Dowell, , and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 18051824, doi:10.1175/2008MWR2691.1.

    • Search Google Scholar
    • Export Citation
  • Aksoy, A., , S. Lorsolo, , T. Vukicevic, , K. J. Sellwood, , S. D. Aberson, , and F. Zhang, 2012: The HWRF Hurricane Ensemble Data Assimilation System (HEDAS) for high-resolution data: The impact of airborne Doppler radar observations in an OSSE. Mon. Wea. Rev., 140, 18431862, doi:10.1175/MWR-D-11-00212.1.

    • Search Google Scholar
    • Export Citation
  • Aksoy, A., , S. D. Aberson, , T. Vukicevic, , K. J. Sellwood, , S. Lorsolo, , and X. Zhang, 2013: Assimilation of high-resolution tropical cyclone observations with an ensemble Kalman filter using NOAA/AOML/HRD’s HEDAS: Evaluation of the 2008–11 vortex-scale analyses. Mon. Wea. Rev., 141, 18421865, doi:10.1175/MWR-D-12-00194.1.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., , W. Huang, , Y.-R. Guo, , A. J. Bourgeois, , and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914, doi:10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, doi:10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., , B. D. Jamison, , W. R. Moninger, , S. R. Sahm, , B. E. Schwartz, , and T. W. Schlatter, 2010: Relative short-range forecast impact from aircraft, profiler, radiosonde, VAD, GPS-PW, METAR, and mesonet observations via the RUC hourly assimilation cycle. Mon. Wea. Rev., 138, 13191343, doi:10.1175/2009MWR3097.1.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and Coauthors, 2013: NASA’s Genesis and Rapid Intensification Processes (GRIP) Field Experiment. Bull. Amer. Meteor. Soc., 94, 345363, doi:10.1175/BAMS-D-11-00232.1.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., , and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor.,7, 105–113, doi:10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2.

  • Dong, J., , and M. Xue, 2013: Assimilation of radial velocity and reflectivity data from coastal WSR-88D radars using an ensemble Kalman filter for the analysis and forecast of landfalling Hurricane Ike (2008). Quart. J. Roy. Meteor. Soc., 139, 467487, doi:10.1002/qj.1970.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., , and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., , and S. M. Imbembo, 1976: The structure of a small, intense hurricane—Inez 1966. Mon. Wea. Rev., 104, 418442, doi:10.1175/1520-0493(1976)104<0418:TSOASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G., , L. Tian, , A. J. Heymsfield, , L. Li, , and S. Guimond, 2010: Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285308, doi:10.1175/2009JAS3132.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , J. Dudhia, , and S.-H. Chen, 2004: A revised approach to ice-microphysical processes for the bulk parameterization of cloud and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., , and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., , and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165–170.

  • Landsea, C. W., , and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R. M., , and D. Atlas, 1961: Precipitation motion by pulse Doppler radar. Proc. Ninth Weather Radar Conf., Kansas City, MO, Amer. Meteor. Soc., 218–223.

  • Li, L., , G. Heymsfield, , J. Carswell, , D. Schaubert, , M. Mclinden, , M. Vega, , and M. Perrine, 2011: Development of the NASA High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) for tropical storm research. Preprints, IEEE Aerospace Conf., Big Sky, MT, IEEE, Paper 6.0202, 7 pp.

  • Marks, F. D., Jr., , and R. A. Houze Jr., 1987: Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci., 44, 12961317, doi:10.1175/1520-0469(1987)044<1296:ICSOHA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., , and F. Zhang, 2008a: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3DVAR in a real-data case study. Mon. Wea. Rev., 136, 522539, doi:10.1175/2007MWR2106.1.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., , and F. Zhang, 2008b: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part IV: Comparison with 3DVAR in a real-data case study. Mon. Wea. Rev., 136, 36713682, doi:10.1175/2008MWR2270.1.

    • Search Google Scholar
    • Export Citation
  • Michelson, S. A., , and N. L. Seaman, 2000: Assimilation of NEXRAD-VAD winds in summertime meteorological simulations over the northeastern United States. J. Appl. Meteor., 39, 367383, doi:10.1175/1520-0450(2000)039<0367:AONVWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., , W.-G. Cheon, , and S.-Y. Hong, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427, doi:10.1023/A:1022146015946.

    • Search Google Scholar
    • Export Citation
  • Poterjoy, J., , and F. Zhang, 2011: Dynamics and structure of forecast error covariance in the core of a developing hurricane. J. Atmos. Sci., 68, 1586–1605, doi:10.1175/2011JAS3681.1.

    • Search Google Scholar
    • Export Citation
  • Poterjoy, J., , F. Zhang, , and Y. Weng, 2014: The effects of sampling errors on the EnKF assimilation of inner-core hurricane observations. Mon. Wea. Rev., 142, 1609–1630, doi:10.1175/MWR-D-13-00305.1.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., , S. A. Braun, , F. Zhang, , and Y. Weng, 2013: Ensemble Kalman filter assimilation of simulated HIWRAP Doppler velocity data in a hurricane. Mon. Wea. Rev., 141, 26832704, doi:10.1175/MWR-D-12-00157.1.

    • Search Google Scholar
    • Export Citation
  • Weng, Y., , and F. Zhang, 2012: Assimilating airborne Doppler radar observations with an ensemble Kalman filter for convection-permitting hurricane initialization and prediction: Katrina (2005). Mon. Wea. Rev., 140, 841859, doi:10.1175/2011MWR3602.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , C. Snyder, , and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 12381253, doi:10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , Y. Weng, , J. A. Sippel, , Z. Meng, , and C. H. Bishop, 2009: Convection-permitting hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter: Humberto (2007). Mon. Wea. Rev., 137, 21052125, doi:10.1175/2009MWR2645.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , Y. Weng, , J. F. Gamache, , and F. D. Marks, 2011: Performance of convection-permitting hurricane initialization and prediction during 2008–2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophys. Res. Lett., 38, L15810, doi:10.1029/2011GL048469.

    • Search Google Scholar
    • Export Citation
  • Zhao, Q., , and Y. Jin, 2008: High-resolution radar data assimilation for Hurricane Isabel (2003) at landfall. Bull. Amer. Meteor. Soc., 89, 13551372, doi:10.1175/2008BAMS2562.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, K., , Y. Pan, , M. Xue, , X. Wang, , J. S. Whitaker, , S. G. Benjamin, , S. S. Weygandt, , and M. Hu, 2013: A regional GSI-based ensemble Kalman filter data assimilation system for the Rapid Refresh configuration: Testing at reduced resolution. Mon. Wea. Rev., 141, 41184139, doi:10.1175/MWR-D-13-00039.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 13 13 7
PDF Downloads 9 9 7

Ensemble Kalman Filter Assimilation of HIWRAP Observations of Hurricane Karl (2010) from the Unmanned Global Hawk Aircraft

View More View Less
  • 1 Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, and Goddard Earth Sciences Technology and Research, Morgan State University, Baltimore, Maryland
  • 2 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
  • 3 Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, and Goddard Earth Sciences Technology and Research, Morgan State University, Baltimore, Maryland
  • 4 Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

This study utilizes an ensemble Kalman filter (EnKF) to assess the impact of assimilating observations of Hurricane Karl from the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a new Doppler radar on board the NASA Global Hawk unmanned airborne system, which has the benefit of a 24–26-h flight duration, or about 2–3 times that of a conventional aircraft. The first HIWRAP observations were taken during NASA’s Genesis and Rapid Intensification Processes (GRIP) experiment in 2010. Observations considered here are Doppler velocity (Vr) and Doppler-derived velocity–azimuth display (VAD) wind profiles (VWPs). Karl is the only hurricane to date for which HIWRAP data are available. Assimilation of either Vr or VWPs has a significant positive impact on the EnKF analyses and forecasts of Hurricane Karl. Analyses are able to accurately estimate Karl’s observed location, maximum intensity, size, precipitation distribution, and vertical structure. In addition, forecasts initialized from the EnKF analyses are much more accurate than a forecast without assimilation. The forecasts initialized from VWP-assimilating analyses perform slightly better than those initialized from Vr-assimilating analyses, and the latter are less accurate than EnKF-initialized forecasts from a recent proof-of-concept study with simulated data. Likely causes for this discrepancy include the quality and coverage of the HIWRAP data collected from Karl and the presence of model error in this real-data situation. The advantages of assimilating VWP data likely include the ability to simultaneously constrain both components of the horizontal wind and to circumvent reliance upon vertical velocity error covariance.

Corresponding author address: Dr. Jason A. Sippel, NASA GSFC, Code 612, Greenbelt, MD 20771. E-mail: jason.sippel@nasa.gov

Abstract

This study utilizes an ensemble Kalman filter (EnKF) to assess the impact of assimilating observations of Hurricane Karl from the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a new Doppler radar on board the NASA Global Hawk unmanned airborne system, which has the benefit of a 24–26-h flight duration, or about 2–3 times that of a conventional aircraft. The first HIWRAP observations were taken during NASA’s Genesis and Rapid Intensification Processes (GRIP) experiment in 2010. Observations considered here are Doppler velocity (Vr) and Doppler-derived velocity–azimuth display (VAD) wind profiles (VWPs). Karl is the only hurricane to date for which HIWRAP data are available. Assimilation of either Vr or VWPs has a significant positive impact on the EnKF analyses and forecasts of Hurricane Karl. Analyses are able to accurately estimate Karl’s observed location, maximum intensity, size, precipitation distribution, and vertical structure. In addition, forecasts initialized from the EnKF analyses are much more accurate than a forecast without assimilation. The forecasts initialized from VWP-assimilating analyses perform slightly better than those initialized from Vr-assimilating analyses, and the latter are less accurate than EnKF-initialized forecasts from a recent proof-of-concept study with simulated data. Likely causes for this discrepancy include the quality and coverage of the HIWRAP data collected from Karl and the presence of model error in this real-data situation. The advantages of assimilating VWP data likely include the ability to simultaneously constrain both components of the horizontal wind and to circumvent reliance upon vertical velocity error covariance.

Corresponding author address: Dr. Jason A. Sippel, NASA GSFC, Code 612, Greenbelt, MD 20771. E-mail: jason.sippel@nasa.gov
Save