• Adcroft, A., , C. Hill, , and J. Marshall, 1997: Representation of topography by shaved cells in a height coordinate ocean model. Mon. Wea. Rev., 125, 22932315, doi:10.1175/1520-0493(1997)125<2293:ROTBSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adcroft, A., , J.-M. Campin, , C. Hill, , and J. Marshall, 2004: Implementation of an atmosphere–ocean general circulation model on the expanded spherical cube. Mon. Wea. Rev., 132, 28452863, doi:10.1175/MWR2823.1.

    • Search Google Scholar
    • Export Citation
  • Benacchio, T., , W. P. O'Neill, , and R. Klein, 2014: A blended soundproof-to-compressible numerical model for small- to mesoscale atmospheric dynamics. Mon. Wea. Rev., 142, 44164438, doi:10.1175/MWR-D-13-00384.1.

    • Search Google Scholar
    • Export Citation
  • Bonaventura, L., 2000: A semi-implicit semi-Lagrangian scheme using the height coordinate for a nonhydrostatic and fully elastic model of atmospheric flows. J. Comput. Phys., 158, 186213, doi:10.1006/jcph.1999.6414.

    • Search Google Scholar
    • Export Citation
  • Botta, N., , R. Klein, , S. Langenberg, , and S. Lützenkirchen, 2004: Well balanced finite volume methods for nearly hydrostatic flows. J. Comput. Phys., 196, 539565, doi:10.1016/j.jcp.2003.11.008.

    • Search Google Scholar
    • Export Citation
  • Bryan, G., , and J. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, doi:10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cullen, M., 1990: A test of a semi-implicit integration technique for a fully compressible nonhydrostatic model. Quart. J. Roy. Meteor. Soc.,116, 1253–1258, doi:10.1002/qj.49711649513.

  • Davies, T., , M. Cullen, , A. Malcolm, , M. Mawson, , A. Staniforth, , A. White, , and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc.,131, 1759–1782, doi:10.1256/qj.04.101.

  • Durran, D., , and P. Blossey, 2012: Implicit–explicit multistep methods for fast-wave–slow-wave problems. Mon. Wea. Rev.,140, 1307–1325, doi:10.1175/MWR-D-11-00088.1.

  • Fast, J., 2003: Forecasts of valley circulations using the terrain-following and step-mountain vertical coordinates in the Meso-Eta model. Wea. Forecasting, 18, 11921206, doi:10.1175/1520-0434(2003)018<1192:FOVCUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gary, J., 1973: Estimate of truncation error in transformed coordinate, primitive equation atmospheric models. J. Atmos. Sci., 30, 223233, doi:10.1175/1520-0469(1973)030<0223:EOTEIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Good, B., , A. Gadian, , S.-J. Lock, , and A. Ross, 2013: Performance of the cut-cell method of representing orography in idealized simulations. Atmos. Sci. Lett., 15, 44–49, doi:10.1002/asl2.465.

    • Search Google Scholar
    • Export Citation
  • Harris, L., , and S.-J. Lin, 2013: A two-way nested global-regional dynamical core on the cubed-sphere grid. Mon. Wea. Rev., 141, 283306, doi:10.1175/MWR-D-11-00201.1.

    • Search Google Scholar
    • Export Citation
  • Hoinka, K., , and G. Zangl, 2004: The influence of the vertical coordinate on simulations of a PV streamer crossing the Alps. Mon. Wea. Rev.,132, 1860–1867, doi:10.1175/1520-0493(2004)132〈1860:TIOTVC〉2.0.CO;2.

  • Kanamitsu, M., and Coauthors, 2002: NCEP dynamical seasonal forecast system 2000. Bull. Amer. Meteor. Soc.,83, 1019–1037, doi:10.1175/1520-0477(2002)083<1019:NDSFS>2.3.CO;2.

  • Klemp, J., 2011: A terrain-following coordinate with smoothed coordinate surfaces. Mon. Wea. Rev., 139, 21632169, doi:10.1175/MWR-D-10-05046.1.

    • Search Google Scholar
    • Export Citation
  • Klemp, J., , W. Skamarock, , and O. Fuhrer, 2003: Numerical consistency of metric terms in terrain-following coordinates. Mon. Wea. Rev., 131, 12291239, doi:10.1175/1520-0493(2003)131<1229:NCOMTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leuenberger, D., , M. Koller, , O. Fuhrer, , and C. Schär, 2010: A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon. Wea. Rev., 138, 36833689, doi:10.1175/2010MWR3307.1.

    • Search Google Scholar
    • Export Citation
  • Melvin, T., , M. Dubal, , N. Wood, , A. Staniforth, , and M. Zerroukat, 2010: An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the nonhydrostatic vertical slice equations. Quart. J. Roy. Meteor. Soc., 137, 799814, doi:10.1002/qj.603.

    • Search Google Scholar
    • Export Citation
  • Nair, R., , S. Thomas, , and R. Loft, 2005: A discontinuous Galerkin global shallow water model. Mon. Wea. Rev., 133, 876888, doi:10.1175/MWR2903.1.

    • Search Google Scholar
    • Export Citation
  • Norman, M., , R. Nair, , and F. Semazzi, 2011: A low communication and large time step explicit finite-volume solver for non-hydrostatic atmospheric dynamics. J. Comput. Phys., 230, 15671584, doi:10.1016/j.jcp.2010.11.022.

    • Search Google Scholar
    • Export Citation
  • OpenFOAM, cited 2014: The opensource CFD toolbox. The OpenCFD Foundation. [Available online at http://www.openfoam.org.]

  • Putman, W., 2007: Development of the finite-volume dynamical core on the cubed-sphere. Ph.D. thesis, Paper 511, The Florida State University, 91 pp. [Available online at http://diginole.lib.fsu.edu/etd/511/.]

  • Qian, J., , F. Semazzi, , and J. Scroggs, 1998: A global nonhydrostatic semi-Lagrangian atmospheric model with orography. Mon. Wea. Rev., 126, 747771, doi:10.1175/1520-0493(1998)126<0747:AGNSLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rančić, M., , R. Purser, , and F. Mesinger, 1996: A global shallow-water model using an expanded spherical cube: Gnomonic versus conformal coordinates. Quart. J. Roy. Meteor. Soc., 122, 959982, doi:10.1002/qj.49712253209.

    • Search Google Scholar
    • Export Citation
  • Rutt, I. C., , J. Thuburn, , and A. Staniforth, 2006: A variational method for orographic filtering in NWP and climate models. Quart. J. Roy. Meteor. Soc.,132B, 1795–1813, doi:10.1256/qj.05.133.

  • Schär, C., , D. Leuenberger, , O. Fuhrer, , D. Lüthi, , and C. Girard, 2002: A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon. Wea. Rev., 130, 24592480, doi:10.1175/1520-0493(2002)130<2459:ANTFVC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simarro, J., , and M. Hortal, 2012: A semi-implicit non-hydrostatic dynamical kernel using finite elements in the vertical discretization. Quart. J. Roy. Meteor. Soc., 138, 826839, doi:10.1002/qj.952.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., , and J. Doyle, cited 2013: Standard test set for nonhydrostatic dynamical cores of NWP models. UCAR/MMM. [Available online at http://www.mmm.ucar.edu/projects/srnwp_tests.]

  • Smolarkiewicz, P., , and J. Szmelter, 2011: A nonhydrostatic unstructured-mesh soundproof model for simulation of internal gravity waves. Acta Geophys.,59, 1109–1134, doi:10.2478/s11600-011-0043-z.

  • Smolarkiewicz, P., , L. Margolin, , and A. Wyszogrodzki, 2001: A class of nonhydrostatic global models. J. Atmos. Sci., 58, 349364, doi:10.1175/1520-0469(2001)058<0349:ACONGM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P., , C. Kühnlein, , and N. Wedi, 2014: A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics. J. Comput. Phys., 263, 185205, doi:10.1016/j.jcp.2014.01.031.

    • Search Google Scholar
    • Export Citation
  • Steppeler, J., , H. Bitzer, , M. Minotte, , and L. Bonaventura, 2002: Nonhydrostatic atmospheric modeling using a z-coordinate representation. Mon. Wea. Rev., 130, 21432149, doi:10.1175/1520-0493(2002)130<2143:NAMUAZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tanguay, M., , A. Robert, , and R. Laprise, 1990: A semi-implicit semi-Lagrangian fully compressible regional forecast model. Mon. Wea. Rev., 118, 19701980, doi:10.1175/1520-0493(1990)118<1970:ASISLF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., , and C. Cotter, 2012: A framework for mimetic discretization of the rotating shallow-water equations on arbitrary polygonal grids. SIAM J. Sci. Comput., 34, B203B225, doi:10.1137/110850293.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., , C. Cotter, , and T. Dubos, 2014: A mimetic, semi-implicit, forward-in-time, finite volume shallow water model: Comparison of hexagonal–icosahedral and cubed sphere grids. Geosci. Model Dev., 7, 909–929, doi:10.5194/gmd-7-909-2014.

    • Search Google Scholar
    • Export Citation
  • Webster, S., , A. Brown, , D. Cameron, , and C. Jones, 2003: Improvements to the representation of orography in the Met Office Unified Model. Quart. J. Roy. Meteor. Soc.,129B, 1989–2010, doi:10.1256/qj.02.133.

  • Weller, H., 2014: Non-orthogonal version of the arbitrary polygonal C-grid and a new diamond grid. Geosci. Model Dev.,7, 779–797, doi:10.5194/gmd-7-779-2014.

  • Weller, H., , H. Weller, , and A. Fournier, 2009: Voronoi, Delaunay, and block-structured mesh refinement for solution of the shallow water equations on the sphere. Mon. Wea. Rev., 137, 42084224, doi:10.1175/2009MWR2917.1.

    • Search Google Scholar
    • Export Citation
  • Weller, H., , S.-J. Lock, , and N. Wood, 2013: Runge–Kutta IMEX schemes for the horizontally explicit/vertically implicit (HEVI) solution of wave equations. J. Comput. Phys., 252, 365381, doi:10.1016/j.jcp.2013.06.025.

    • Search Google Scholar
    • Export Citation
  • White, P., 2003: IFS documentation. Part III: Dynamics and numerical procedures. ECMWF Tech. Rep. CY23R4.

  • Zängl, G., 2012: Extending the numerical stability limit of terrain-following coordinate models over steep slopes. Mon. Wea. Rev., 140, 37223733, doi:10.1175/MWR-D-12-00049.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 25 25 8
PDF Downloads 15 15 5

Curl-Free Pressure Gradients over Orography in a Solution of the Fully Compressible Euler Equations with Implicit Treatment of Acoustic and Gravity Waves

View More View Less
  • 1 Department of Meteorology, University of Reading, Reading, United Kingdom
  • 2 Department of Engineering, University of Leeds, Leeds, United Kingdom
© Get Permissions
Restricted access

Abstract

Steep orography can cause noisy solutions and instability in models of the atmosphere. A new technique for modeling flow over orography is introduced that guarantees curl-free gradients on arbitrary grids, implying that the pressure gradient term is not a spurious source of vorticity. This mimetic property leads to better hydrostatic balance and better energy conservation on test cases using terrain-following grids. Curl-free gradients are achieved by using the covariant components of velocity over orography rather than the usual horizontal and vertical components.

In addition, gravity and acoustic waves are treated implicitly without the need for mean and perturbation variables or a hydrostatic reference profile. This enables a straightforward description of the implicit treatment of gravity waves.

Results are presented of a resting atmosphere over orography and the curl-free pressure gradient formulation is advantageous. Results of gravity waves over orography are insensitive to the placement of terrain-following layers. The model with implicit gravity waves is stable in strongly stratified conditions, with NΔt up to at least 10 (where N is the Brunt–Väisälä frequency). A warm bubble rising over orography is simulated and the curl-free pressure gradient formulation gives much more accurate results for this test case than a model without this mimetic property.

Denotes Open Access content.

Corresponding author address: Hilary Weller, Dept. of Meteorology, University of Reading, Reading RG4 7AN, United Kingdom. E-mail: h.weller@reading.ac.uk

Abstract

Steep orography can cause noisy solutions and instability in models of the atmosphere. A new technique for modeling flow over orography is introduced that guarantees curl-free gradients on arbitrary grids, implying that the pressure gradient term is not a spurious source of vorticity. This mimetic property leads to better hydrostatic balance and better energy conservation on test cases using terrain-following grids. Curl-free gradients are achieved by using the covariant components of velocity over orography rather than the usual horizontal and vertical components.

In addition, gravity and acoustic waves are treated implicitly without the need for mean and perturbation variables or a hydrostatic reference profile. This enables a straightforward description of the implicit treatment of gravity waves.

Results are presented of a resting atmosphere over orography and the curl-free pressure gradient formulation is advantageous. Results of gravity waves over orography are insensitive to the placement of terrain-following layers. The model with implicit gravity waves is stable in strongly stratified conditions, with NΔt up to at least 10 (where N is the Brunt–Väisälä frequency). A warm bubble rising over orography is simulated and the curl-free pressure gradient formulation gives much more accurate results for this test case than a model without this mimetic property.

Denotes Open Access content.

Corresponding author address: Hilary Weller, Dept. of Meteorology, University of Reading, Reading RG4 7AN, United Kingdom. E-mail: h.weller@reading.ac.uk
Save