Assimilation of Lightning Data Using a Nudging Method Involving Low-Level Warming

Max R. Marchand Florida State University, Tallahassee, Florida

Search for other papers by Max R. Marchand in
Current site
Google Scholar
PubMed
Close
and
Henry E. Fuelberg Florida State University, Tallahassee, Florida

Search for other papers by Henry E. Fuelberg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study presents a new method for assimilating lightning data into numerical models that is suitable at convection-permitting scales. The authors utilized data from the Earth Networks Total Lightning Network at 9-km grid spacing to mimic the resolution of the Geostationary Lightning Mapper (GLM) that will be on the Geostationary Operational Environmental Satellite-R (GOES-R). The assimilation procedure utilizes the numerical Weather Research and Forecasting (WRF) Model. The method (denoted MU) warms the most unstable low levels of the atmosphere at locations where lightning was observed but deep convection was not simulated based on the absence of graupel. Simulation results are compared with those from a control simulation and a simulation employing the lightning assimilation method developed by Fierro et al. (denoted FO) that increases water vapor according to a nudging function that depends on the observed flash rate and simulated graupel mixing ratio. Results are presented for three severe storm days during 2011 and compared with hourly NCEP stage-IV precipitation observations. Compared to control simulations, both the MU and FO assimilation methods produce improved simulated precipitation fields during the assimilation period and a short time afterward based on subjective comparisons and objective statistical scores (~0.1, or 50%, improvement of equitable threat scores). The MU generally performs better at simulating isolated thunderstorms and other weakly forced deep convection, while FO performs better for the case having strong synoptic forcing. Results show that the newly developed MU method is a viable alternative to the FO method, exhibiting utility in producing thunderstorms where observed, and providing improved analyses at low computational cost.

Corresponding author address: Max R. Marchand, Florida State University, Earth, Ocean, and Atmospheric Science Meteorology, Rm. 404 Love Bldg., 1017 Academic Way, Tallahassee, FL 32306-4520. E-mail: mrm06j@my.fsu.edu

Abstract

This study presents a new method for assimilating lightning data into numerical models that is suitable at convection-permitting scales. The authors utilized data from the Earth Networks Total Lightning Network at 9-km grid spacing to mimic the resolution of the Geostationary Lightning Mapper (GLM) that will be on the Geostationary Operational Environmental Satellite-R (GOES-R). The assimilation procedure utilizes the numerical Weather Research and Forecasting (WRF) Model. The method (denoted MU) warms the most unstable low levels of the atmosphere at locations where lightning was observed but deep convection was not simulated based on the absence of graupel. Simulation results are compared with those from a control simulation and a simulation employing the lightning assimilation method developed by Fierro et al. (denoted FO) that increases water vapor according to a nudging function that depends on the observed flash rate and simulated graupel mixing ratio. Results are presented for three severe storm days during 2011 and compared with hourly NCEP stage-IV precipitation observations. Compared to control simulations, both the MU and FO assimilation methods produce improved simulated precipitation fields during the assimilation period and a short time afterward based on subjective comparisons and objective statistical scores (~0.1, or 50%, improvement of equitable threat scores). The MU generally performs better at simulating isolated thunderstorms and other weakly forced deep convection, while FO performs better for the case having strong synoptic forcing. Results show that the newly developed MU method is a viable alternative to the FO method, exhibiting utility in producing thunderstorms where observed, and providing improved analyses at low computational cost.

Corresponding author address: Max R. Marchand, Florida State University, Earth, Ocean, and Atmospheric Science Meteorology, Rm. 404 Love Bldg., 1017 Academic Way, Tallahassee, FL 32306-4520. E-mail: mrm06j@my.fsu.edu
Save
  • Alexander, G. D., J. A. Weinman, V. Karyampudi, W. S. Olson, and A. C. L. Lee, 1999: The effect of assimilating rain rates derived from satellites and lightning on forecasts of the 1993 Superstorm. Mon. Wea. Rev., 127, 1433–1457, doi:10.1175/1520-0493(1999)127<1433:TEOARR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Allen, B. J., and E. R. Mansell, 2013: Assimilation of pseudo Geostationary Lightning Mapper observations into a storm scale numerical model using the ensemble Kalman filter. Sixth Conf. on the Meteorological Applications of Lightning Data, Austin, TX, Amer. Meteor. Soc., 7.2. [Available online at https://ams.confex.com/ams/93Annual/webprogram/Paper223239.html.]

  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884–2903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., 1974: Data assimilation and initialization of hurricane prediction model. J. Atmos. Sci., 31, 702–719, doi:10.1175/1520-0469(1974)031<0702:DAAIOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., and J. S. Kain, 2006: Sensitivity of several performance measures to displacement error, bias, and event frequency. Wea. Forecasting, 21, 636–648, doi:10.1175/WAF933.1.

    • Search Google Scholar
    • Export Citation
  • Barthe, C., and J.-P. Pinty, 2007: Simulation of a supercellular storm using a three-dimensional mesoscale model with an explicit lightning flash scheme. J. Geophys. Res., 112, D06210, doi:10.1029/2006JD007484.

    • Search Google Scholar
    • Export Citation
  • Barthe, C., W. Deierling, and M. C. Barth, 2010: Estimation of total lightning from various storm parameters: A cloud-resolving model study. J. Geophys. Res., 115, D24202, doi:10.1029/2010JD014405.

    • Search Google Scholar
    • Export Citation
  • Chagnon, J. M., and P. R. Bannon, 2005: Wave response during hydrostatic and geostrophic adjustment. Part I: Transient dynamics. J. Atmos. Sci., 62, 1311–1329, doi:10.1175/JAS3283.1.

    • Search Google Scholar
    • Export Citation
  • Chang, D.-E., J. A. Weinman, C. A. Morales, and W. S. Olson, 2001: The effect of spaceborne microwave and ground-based continuous lightning measurements on forecasts of the 1998 Groundhog Day storm. Mon. Wea. Rev., 129, 1809–1833, doi:10.1175/1520-0493(2001)129<1809:TEOSMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deierling, W., W. A. Petersen, J. Latham, S. Ellis, and H. J. Christian, 2008: The relationship between lightning activity and ice fluxes in thunderstorms. J. Geophys. Res., 113, D15210, doi:10.1029/2007JD009700.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble data assimilation. J. Atmos. Oceanic Technol., 26, 911–927, doi:10.1175/2008JTECHA1156.1.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 1982–2005, doi:10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272–294, doi:10.1175/2010MWR3438.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., P. Bauer, and J.-F. Mahfouf, 2007: Issues regarding the assimilation of cloud and precipitation data. J. Atmos. Sci., 64, 3785–3798, doi:10.1175/2006JAS2044.1.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343–367, doi:10.1007/s10236-003-0036-9.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., and J. M. Reisner, 2011: High-resolution simulation of the electrification and lightning of Hurricane Rita during the period of rapid intensification. J. Atmos. Sci., 68, 477–494, doi:10.1175/2010JAS3659.1.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., L. M. Leslie, E. R. Mansell, and J. M. Straka, 2008: Numerical simulations of the electrification and microphysics of the weakly electrified 9 February 1993 TOGA COARE squall line: Comparisons with observations. Mon. Wea. Rev., 136, 364–379, doi:10.1175/2007MWR2156.1.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., R. F. Rogers, F. D. Marks, and D. S. Nolan, 2009: The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW model. Mon. Wea. Rev., 137, 3717–3743, doi:10.1175/2009MWR2946.1.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., E. R. Mansell, C. L. Ziegler, and D. R. MacGorman, 2012: Application of a lightning data assimilation technique in the WRF-ARW model at cloud-resolving scales for the tornado outbreak of 24 May 2011. Mon. Wea. Rev., 140, 2609–2627, doi:10.1175/MWR-D-11-00299.1.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., J. Gao, C. L. Ziegler, E. R. Mansell, D. R. MacGorman, and S. R. Dembek, 2014: Evaluation of a cloud-scale lightning data assimilation technique and a 3DVAR method for the analysis and short-term forecast of the 29 June 2012 derecho event. Mon. Wea. Rev., 142, 183–202, doi:10.1175/MWR-D-13-00142.1.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and C. F. Chappell, 1981: Preliminary numerical tests of the modification of mesoscale convective systems. J. Appl. Meteor., 20, 910–921, doi:10.1175/1520-0450(1981)020<0910:PNTOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., Jr., and M. Segal, 2001: Impact of improved initialization of mesoscale features on convective system rainfall in 10-km Eta simulations. Wea. Forecasting, 16, 680–696, doi:10.1175/1520-0434(2001)016<0680:IOIIOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gandin, L. S., and A. H. Murphy, 1992: Equitable skill scores for categorical forecasts. Mon. Wea. Rev., 120, 361–370, doi:10.1175/1520-0493(1992)120<0361:ESSFCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 34–49, doi:10.1016/j.atmosres.2013.01.006.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155–167, doi:10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.

  • Hu, M., M. Xue, and K. Brewster, 2006: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675–698, doi:10.1175/MWR3092.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., E. J. Mlawer, S. A. Clough, and J.-J. Morcrette, 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J. Geophys. Res., 105, 14 873–14 890, doi:10.1029/2000JD900091.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, C. D., and B. Macpherson, 1997: A latent heat nudging scheme for the assimilation of precipitation data into an operational mesoscale model. Meteor. Appl., 4, 269–277, doi:10.1017/S1350482797000522.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Kasahara, A., R. C. Balgovind, and B. B. Katz, 1988: Use of satellite radiometric imagery data for improvement in the analysis of divergent wind in the tropics. Mon. Wea. Rev., 116, 866–883, doi:10.1175/1520-0493(1988)116<0866:UOSRID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1096, doi:10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., J. Xue, H. S. Bedi, K. Ingles, and O. Oosterhof, 1991: Physical initialization for numerical weather prediction over the tropics. Tellus, 43A, 53–81, doi:10.1034/j.1600-0870.1991.t01-3-00007.x.

    • Search Google Scholar
    • Export Citation
  • Kuhlman, K. M., C. L. Ziegler, E. R. Mansell, D. R. MacGorman, and J. M. Straka, 2006: Numerically simulated electrification and lightning of the 29 June 2000 STEPS supercell storm. Mon. Wea. Rev., 134, 2734–2757, doi:10.1175/MWR3217.1.

    • Search Google Scholar
    • Export Citation
  • Lericos, T. P., H. E. Fuelberg, M. L. Weisman, and A. I. Watson, 2007: Numerical simulations of the effects of coastlines on the evolution of strong, long-lived squall lines. Mon. Wea. Rev., 135, 1710–1731, doi:10.1175/MWR3381.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. Preprints, 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at http://ams.confex.com/ams/pdfpapers/83847.pdf.]

  • Loftus, A. M., D. B. Weber, and C. A. Doswell III, 2008: Parameterized mesoscale forcing mechanisms for initiating numerically simulated isolated multicellular convection. Mon. Wea. Rev., 136, 2408–2421, doi:10.1175/2007MWR2133.1.

    • Search Google Scholar
    • Export Citation
  • Lopez, P., 2011: Direct 4D-Var assimilation of NCEP stage IV radar and gauge precipitation data at ECMWF. Mon. Wea. Rev., 139, 2098–2116, doi:10.1175/2010MWR3565.1.

    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., G. Kelman, and G. Ellrod, 2014: An evaluation of the efficacy of using observed lightning to improve convective lightning forecasts. Wea. Forecasting, in press.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., P. Bauer, and V. Marécal, 2005: The assimilation of SSM/I and TMI rainfall rates in the ECMWF 4D-Var system. Quart. J. Roy. Meteor. Soc., 131, 437–458, doi:10.1256/qj.04.17.

    • Search Google Scholar
    • Export Citation
  • Manobianco, J., S. Koch, V. M. Karyampudi, and A. J. Negri, 1994: The impact of assimilating satellite-derived precipitation rates on numerical simulations of the ERICA IOP 4 cyclone. Mon. Wea. Rev., 122, 341–365, doi:10.1175/1520-0493(1994)122<0341:TIOASD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., 2014: Storm-scale ensemble Kalman filter assimilation of total lightning flash-extent data. Mon. Wea. Rev., 142, 3654–3666, doi:10.1175/MWR-D-14-00061.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka, 2005: Charge structure and lightning sensitivity in a simulated multicell thunderstorm. J. Geophys. Res., 110, D12101, doi:10.1029/2004JD005287.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and D. R. MacGorman, 2007: A lightning data assimilation technique for mesoscale forecast models. Mon. Wea. Rev., 135, 1732–1748, doi:10.1175/MWR3387.1.

    • Search Google Scholar
    • Export Citation
  • Marecal, V., and J.-F. Mahfouf, 2003: Experiments on 4DVAR assimilation of rainfall data using an incremental formulation. Quart. J. Roy. Meteor. Soc., 129, 3137–3160, doi:10.1256/qj.02.120.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 430 pp.

  • McCaul, E. W., Jr., S. J. Goodman, K. M. LaCasse, and D. J. Cecil, 2009: Forecasting lightning threat using cloud-resolving model simulations. Wea. Forecasting, 24, 709–729, doi:10.1175/2008WAF2222152.1.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., H. Zhang, G. Heymsfield, R. Hood, J. Dudhia, J. B. Halverson, and F. Marks, 2006: Factors affecting the evolution of Hurricane Erin (2001) and the distributions of hydrometeors: Role of microphysical processes. J. Atmos. Sci., 63, 127–150, doi:10.1175/JAS3590.1.

    • Search Google Scholar
    • Export Citation
  • Mittermaier, M. P., and N. Roberts, 2010: Intercomparison of spatial forecast verification methods: Identifying skillful spatial scales using the fractions skill score. Wea. Forecasting, 25, 343–354, doi:10.1175/2009WAF2222260.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663–16 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Naylor, J., and M. S. Gilmore, 2012: Convective initiation in an idealized cloud model using an updraft nudging technique. Mon. Wea. Rev., 140, 3699–3705, doi:10.1175/MWR-D-12-00163.1.

    • Search Google Scholar
    • Export Citation
  • Papadopoulos, A., T. G. Chronis, and E. N. Anagnostou, 2005: Improving convective precipitation forecasting through assimilation of regional lightning measurements in a mesoscale model. Mon. Wea. Rev., 133, 1961–1977, doi:10.1175/MWR2957.1.

    • Search Google Scholar
    • Export Citation
  • Park, S. K., and D. Zupanski, 2003: Four-dimensional variational data assimilation for mesoscale and storm-scale applications. Meteor. Atmos. Phys., 82, 173–208, doi:10.1007/s00703-001-0586-7.

    • Search Google Scholar
    • Export Citation
  • Pessi, A. T., and S. Businger, 2009a: Relationships between lightning, precipitation, and hydrometeor characteristics over the North Pacific Ocean. J. Appl. Meteor. Climatol., 48, 833–848, doi:10.1175/2008JAMC1817.1.

    • Search Google Scholar
    • Export Citation
  • Pessi, A. T., and S. Businger, 2009b: The impact of lightning data assimilation on a winter storm simulation over the North Pacific Ocean. Mon. Wea. Rev., 137, 3177–3195, doi:10.1175/2009MWR2765.1.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., H. J. Christian, and S. A. Rutledge, 2005: TRMM observations of the global relationship between ice water content and lightning. Geophys. Res. Lett., 32, L14819,doi:10.1029/2005GL023236.

    • Search Google Scholar
    • Export Citation
  • Pickering, K. E., Y. Wang, W.-K. Tao, C. Price, and J.-F. Müller, 1998: Vertical distributions of lightning NOx for use in regional and global chemical transport models. J. Geophys. Res., 103, 31 203–31 216, doi:10.1029/98JD02651.

    • Search Google Scholar
    • Export Citation
  • Price, C., and D. Rind, 1992: A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res., 97, 9919–9933, doi:10.1029/92JD00719.

    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., 2005: An investigation of the ability of a storm scale configuration of the Met Office NWP model to predict flood-producing rainfall. Met Office Tech. Rep. 455, 80 pp.

  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 78–97, doi:10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., J. M. Fritsch, and W. C. Lambert, 2000: A simple technique for using radar data in the dynamic initialization of a mesoscale model. Mon. Wea. Rev., 128, 2560–2574, doi:10.1175/1520-0493(2000)128<2560:ASTFUR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and H. E. Fuelberg, 2013: Documenting storm severity in the mid-Atlantic region using lightning and radar information. Mon. Wea. Rev., 141, 3186–3202, doi:10.1175/MWR-D-12-00287.1.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., 1993: A review of thunderstorm electrification processes. J. Appl. Meteor., 32, 642–655, doi:10.1175/1520-0450(1993)032<0642:AROTEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570–575, doi:10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2011: Lightning and severe weather: A comparison between total and cloud-to-ground lightning trends. Wea. Forecasting, 26, 744–755, doi:10.1175/WAF-D-10-05026.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2009: Next-day convection-allowing WRF model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 3351–3372, doi:10.1175/2009MWR2924.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split non-hydrostatic atmospheric model for research and NWP applications. J. Comput. Phys., 227, 3465–3485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1663–1677, doi:10.1175//2555.1.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and N. L. Seaman, 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev., 118, 1250–1277, doi:10.1175/1520-0493(1990)118<1250:UOFDDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 1536–1548, doi:10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vonnegut, B., 1963: Some facts and speculations concerning the origin and role of thunderstorm electricity. Severe Local Storms, Meteor. Monogr., No. 27, Amer. Meteor. Soc., 224–241.

  • Wang, H., J. Sun, S. Fan, and X.-Y. Huang, 2013: Indirect assimilation of radar reflectivity with WRF 3D-Var and its impact on prediction of four summertime convective events. J. Appl. Meteor. Climatol., 52, 889–902, doi:10.1175/JAMC-D-12-0120.1.

    • Search Google Scholar
    • Export Citation
  • Weygandt, S. S., S. G. Benjamin, M. Hu, T. G. Smirnova, and J. M. Brown, 2008: Use of lightning data to enhance radar assimilation within the RUC and Rapid Refresh models. Third Conf. on Meteorological Application of Lightning Data, New Orleans, LA, Amer. Meteor. Soc., 8.4. [Available online at http://ams.confex.com/ams/pdfpapers/134112.pdf.]

  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 1913–1924, doi:10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.

  • Xiao, Q., and J. Sun, 2007: Multiple-radar data assimilation and short-range quantitative precipitation forecasting of a squall line observed during IHOP_2002. Mon. Wea. Rev., 135, 3381–3404, doi:10.1175/MWR3471.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1876 1553 605
PDF Downloads 269 69 11