• Aksoy, A., , D. C. Dowell, , and C. Snyder, 2010: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part II: Short-range ensemble forecasts. Mon. Wea. Rev., 138, 12731292, doi:10.1175/2009MWR3086.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, doi:10.1111/j.1600-0870.2008.00361.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., , T. Hoar, , K. Raeder, , H. Liu, , N. Collins, , R. Torn, , and A. Arellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, doi:10.1175/2009BAMS2618.1.

    • Search Google Scholar
    • Export Citation
  • Barth, M., , W. Brune, , C. Cantrell, , and S. Rutledge, 2012: Deep Convective Clouds and Chemistry (DC3) operations plan. NASA/NOAA/NSF, 106 pp. [Available online at http://www.eol.ucar.edu/projects/dc3/documents/DC3_Operations_Plan_28_Apr_2012.pdf.]

  • Berner, J., , S.-Y. Ha, , J. P. Hacker, , A. Fournier, , and C. Snyder, 2011: Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. Mon. Wea. Rev., 139, 19721995, doi:10.1175/2010MWR3595.1.

    • Search Google Scholar
    • Export Citation
  • Berner, J., , T. Jung, , and T. N. Palmer, 2012: Systematic model error: The impact of increased horizontal resolution versus improved stochastic and deterministic parameterizations. J. Climate, 25, 49464962, doi:10.1175/JCLI-D-11-00297.1.

    • Search Google Scholar
    • Export Citation
  • Bouttier, F., , B. Vié, , O. Nuissier, , and L. Raynaud, 2012: Impact of stochastic physics in a convection-permitting ensemble. Mon. Wea. Rev., 140, 37063721, doi:10.1175/MWR-D-12-00031.1.

    • Search Google Scholar
    • Export Citation
  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13, doi:10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., , M. Miller, , and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125, 28872908, doi:10.1002/qj.49712556006.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., , P. L. Houtekamer, , G. Pellerin, , Z. Toth, , Y. Zhu, , and M. Wei, 2005: A comparison of the ECMWF, MSC, and NCEP Global Ensemble Prediction Systems. Mon. Wea. Rev., 133, 10761097, doi:10.1175/MWR2905.1.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., , W. A. Gallus, , M. Xue, , and F. Kong, 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140, doi:10.1175/2009WAF2222222.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., , W. A. Gallus, , M. Xue, , and F. Kong, 2010: Growth of spread in convection-allowing and convection-parameterizing ensembles. Wea. Forecasting, 25, 594612, doi:10.1175/2009WAF2222318.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2011: Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble. Mon. Wea. Rev., 139, 14101418, doi:10.1175/2010MWR3624.1.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, , L. J. Wicker, , E. R. Mansell, , and R. L. Tanamachi, 2012: Impact of the environmental low-level wind profile on ensemble forecasts of the 4 May 2007 Greensburg, Kansas, tornadic storm and associated mesocyclones. Mon. Wea. Rev., 140, 696716, doi:10.1175/MWR-D-11-00008.1.

    • Search Google Scholar
    • Export Citation
  • Duc, L., , K. Saito, , and H. Seko, 2013: Spatial-temporal fractions verification for high-resolution ensemble forecasts. Tellus, 65A, 18171, doi:10.3402/tellusa.v65i0.18171.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 24612480, doi:10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., , U. Damrath, , W. Wergen, , and M. E. Baldwin, 2003: The WGNE assessment of short-term quantitative precipitation forecasts. Bull. Amer. Meteor. Soc., 84, 481492, doi:10.1175/BAMS-84-4-481.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., , and R. E. Carbone, 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85, 955965, doi:10.1175/BAMS-85-7-955.

    • Search Google Scholar
    • Export Citation
  • Gebhardt, C., , S. Theis, , P. Krahe, , and V. Renner, 2008: Experimental ensemble forecasts of precipitation based on a convection-resolving model. Atmos. Sci. Lett., 9, 6772, doi:10.1002/asl.177.

    • Search Google Scholar
    • Export Citation
  • Gebhardt, C., , S. Theis, , M. Paulat, , and Z. Ben Bouallègue, 2011: Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmos. Res., 100, 168177, doi:10.1016/j.atmosres.2010.12.008.

    • Search Google Scholar
    • Export Citation
  • Ha, S.-Y., , and C. Snyder, 2014: Influence of surface observations in mesoscale data assimilation using an ensemble Kalman filter. Mon. Wea. Rev., 142, 14891508, doi:10.1175/MWR-D-13-00108.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167, doi:10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129, 550560, doi:10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., , and J. S. Whitaker, 2005: Accounting for the error due to unresolved scales in ensemble data assimilation: A comparison of different approaches. Mon. Wea. Rev., 133, 31323147, doi:10.1175/MWR3020.1.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., , and C. Schär, 2007: Predictability and error growth dynamics in cloud-resolving models. J. Atmos. Sci., 64, 44674478, doi:10.1175/2007JAS2143.1.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., , A. Walser, , W. Langhans, , and C. Schär, 2008: Cloud-resolving ensemble simulations of the August 2005 Alpine flood. Quart. J. Roy. Meteor. Soc., 134, 889904, doi:10.1002/qj.252.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., , H. L. Mitchell, , and X. Deng, 2009: Model error representation in an operational ensemble Kalman filter. Mon. Wea. Rev., 137, 21262143, doi:10.1175/2008MWR2737.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., , J. S. Delamere, , E. J. Mlawer, , M. W. Shephard, , S. A. Clough, , and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

  • Johnson, A., , and X. Wang, 2012: Verification and calibration of neighborhood and object-based probabilistic precipitation forecasts from a multimodel convection-allowing ensemble. Mon. Wea. Rev., 140, 30543077, doi:10.1175/MWR-D-11-00356.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2013: A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Amer. Meteor. Soc., 94, 12131225, doi:10.1175/BAMS-D-11-00264.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., , M. Kanamitsu, , and W. Baker, 1990: Global numerical weather prediction at the National Meteorological Center. Bull. Amer. Meteor. Soc., 71, 14101428, doi:10.1175/1520-0477(1990)071<1410:GNWPAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kong, F., and Coauthors, 2009: A real-time storm-scale ensemble forecast system: 2009 Spring Experiment. 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 16A.3. [Available online at https://ams.confex.com/ams/pdfpapers/154118.pdf.]

  • Lin, Y., , and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at http://ams.confex.com/ams/pdfpapers/83847.pdf.]

  • Mason, S. J., , and N. E. Graham, 2002: Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Quart. J. Roy. Meteor. Soc., 128, 21452166, doi:10.1256/003590002320603584.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., , D. Ovens, , K. Westrick, , and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83, 407430, doi:10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Melhauser, C., , and F. Zhang, 2012: Practical and intrinsic predictability of severe and convective weather at the mesoscales. J. Atmos. Sci., 69, 33503371, doi:10.1175/JAS-D-11-0315.1.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Migliorini, S., , M. Dixon, , R. Bannister, , and S. Ballard, 2011: Ensemble prediction for nowcasting with a convection-permitting model. I: Description of the system and the impact of radar-derived surface precipitation rates. Tellus, 63A, 468496, doi:10.1111/j.1600-0870.2010.00503.x.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , G. Thompson, , and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., , D. R. Bright, , and M. J. Brennan, 2008: Operational forecaster uncertainty needs and future roles. Wea. Forecasting, 23, 10691084, doi:10.1175/2008WAF2222142.1.

    • Search Google Scholar
    • Export Citation
  • Nutter, P., , D. Stensrud, , and M. Xue, 2004a: Effects of coarsely resolved and temporally interpolated lateral boundary conditions on the dispersion of limited-area ensemble forecasts. Mon. Wea. Rev., 132, 23582377, doi:10.1175/1520-0493(2004)132<2358:EOCRAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nutter, P., , M. Xue, , and D. Stensrud, 2004b: Application of lateral boundary condition perturbations to help restore dispersion in limited-area ensemble forecasts. Mon. Wea. Rev., 132, 23782390, doi:10.1175/1520-0493(2004)132<2378:AOLBCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., , R. Buizza, , F. Doblas-Reyes, , T. Jung, , M. Leutbecher, , G. J. Shutts, , M. Steinheimer, , and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. Tech. Rep. ECMWF RD Tech. Memo. 598, 42 pp.

  • Roberts, N. M., , and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, doi:10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • Romine, G. S., , C. S. Schwartz, , C. Snyder, , J. L. Anderson, , and M. L. Weisman, 2013: Model bias in a continuously cycled assimilation system and its influence on convection-permitting forecasts. Mon. Wea. Rev., 141, 12631284, doi:10.1175/MWR-D-12-00112.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263280, doi:10.1175/2009WAF2222267.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., , G. Romine, , K. Smith, , M. Weisman, 2014: Characterizing and optimizing precipitation forecasts from a convection-permitting ensemble initialized by a mesoscale ensemble Kalman filter. Wea. Forecasting, in press.

  • Shutts, G. J., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 30793102, doi:10.1256/qj.04.106.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., , and M. L. Weisman, 2009: The impact of positive-definite moisture transport on NWP precipitation forecasts. Mon. Wea. Rev., 137, 488494, doi:10.1175/2008MWR2583.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Stensrud, D., , H. Brooks, , J. Du, , S. Tracton, , and E. Rogers, 1999: Using ensembles for short-range forecasting. Mon. Wea. Rev., 127, 433446, doi:10.1175/1520-0493(1999)127<0433:UEFSRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Surcel, M., , I. Zawadzki, , and M. K. Yau, 2014: On the filtering properties of ensemble averaging for storm-scale precipitation forecasts. Mon. Wea. Rev., 142, 10931105, doi:10.1175/MWR-D-13-00134.1.

    • Search Google Scholar
    • Export Citation
  • Tegen, I., , P. Hollrig, , M. Chin, , I. Fung, , D. Jacob, , and J. Penner, 1997: Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res., 102, 23 89523 915, doi:10.1029/97JD01864.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., , P. R. Field, , R. M. Rasmussen, , and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010: Performance of a mesoscale ensemble Kalman filter (EnKF) during the NOAA high-resolution hurricane test. Mon. Wea. Rev., 138, 43754392, doi:10.1175/2010MWR3361.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., , G. J. Hakim, , and C. Snyder, 2006: Boundary conditions for limited-area ensemble Kalman filters. Mon. Wea. Rev., 134, 24902502, doi:10.1175/MWR3187.1.

    • Search Google Scholar
    • Export Citation
  • Vié, B., , O. Nuissier, , and V. Ducrocq, 2011: Cloud-resolving ensemble simulations of Mediterranean heavy precipitating events: Uncertainty on initial conditions and lateral boundary conditions. Mon. Wea. Rev., 139, 403423, doi:10.1175/2010MWR3487.1.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., , R. A. Peterson, , and R. E. Treadon, 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc., 78, 25992617, doi:10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., , and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 30783089, doi:10.1175/MWR-D-11-00276.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1997: Resampling hypothesis tests for autocorrelated fields. J. Climate, 10, 6582, doi:10.1175/1520-0442(1997)010<0065:RHTFAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences: An Introduction. 2nd ed. Academic Press, 467 pp.

  • Yussouf, N., , and D. J. Stensrud, 2012: Comparison of single-parameter and multiparameter ensembles for assimilation of radar observations using the ensemble Kalman filter. Mon. Wea. Rev., 140, 562586, doi:10.1175/MWR-D-10-05074.1.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., , E. R. Mansell, , L. J. Wicker, , D. M. Wheatley, , and D. J. Stensrud, 2013: The ensemble Kalman filter analyses and forecasts of the 8 May 2003 Oklahoma City tornadic supercell storm using single- and double-moment microphysics schemes. Mon. Wea. Rev., 141, 33883412, doi:10.1175/MWR-D-12-00237.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., , Y. Wang, , and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, doi:10.1175/MWR-D-10-05091.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , Z. Meng, , and A. Aksoy, 2006: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiment. Mon. Wea. Rev., 134, 722736, doi:10.1175/MWR3101.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 105 105 35
PDF Downloads 104 104 32

Representing Forecast Error in a Convection-Permitting Ensemble System

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Ensembles provide an opportunity to greatly improve short-term prediction of local weather hazards, yet generating reliable predictions remain a significant challenge. In particular, convection-permitting ensemble forecast systems (CPEFSs) have persistent problems with underdispersion. Representing initial and or lateral boundary condition uncertainty along with forecast model error provides a foundation for building a more dependable CPEFS, but the best practice for ensemble system design is not well established.

Several configurations of CPEFSs are examined where ensemble forecasts are nested within a larger domain, drawing initial conditions from a downscaled, continuously cycled, ensemble data assimilation system that provides state-dependent initial condition uncertainty. The control ensemble forecast, with initial condition uncertainty only, is skillful but underdispersive. To improve the reliability of the ensemble forecasts, the control ensemble is supplemented with 1) perturbed lateral boundary conditions; or, model error representation using either 2) stochastic kinetic energy backscatter or 3) stochastically perturbed parameterization tendencies. Forecasts are evaluated against stage IV accumulated precipitation analyses and radiosonde observations. Perturbed ensemble forecasts are also compared to the control forecast to assess the relative impact from adding forecast perturbations. For precipitation forecasts, all perturbation approaches improve ensemble reliability relative to the control CPEFS. Deterministic ensemble member forecast skill, verified against radiosonde observations, decreases when forecast perturbations are added, while ensemble mean forecasts remain similarly skillful to the control.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Glen Romine, NCAR/MMM, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: romine@ucar.edu

Abstract

Ensembles provide an opportunity to greatly improve short-term prediction of local weather hazards, yet generating reliable predictions remain a significant challenge. In particular, convection-permitting ensemble forecast systems (CPEFSs) have persistent problems with underdispersion. Representing initial and or lateral boundary condition uncertainty along with forecast model error provides a foundation for building a more dependable CPEFS, but the best practice for ensemble system design is not well established.

Several configurations of CPEFSs are examined where ensemble forecasts are nested within a larger domain, drawing initial conditions from a downscaled, continuously cycled, ensemble data assimilation system that provides state-dependent initial condition uncertainty. The control ensemble forecast, with initial condition uncertainty only, is skillful but underdispersive. To improve the reliability of the ensemble forecasts, the control ensemble is supplemented with 1) perturbed lateral boundary conditions; or, model error representation using either 2) stochastic kinetic energy backscatter or 3) stochastically perturbed parameterization tendencies. Forecasts are evaluated against stage IV accumulated precipitation analyses and radiosonde observations. Perturbed ensemble forecasts are also compared to the control forecast to assess the relative impact from adding forecast perturbations. For precipitation forecasts, all perturbation approaches improve ensemble reliability relative to the control CPEFS. Deterministic ensemble member forecast skill, verified against radiosonde observations, decreases when forecast perturbations are added, while ensemble mean forecasts remain similarly skillful to the control.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Glen Romine, NCAR/MMM, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: romine@ucar.edu
Save