• Avila, L. A., , and J. Cangialosi, 2011: Tropical cyclone report: Hurricane Irene (AL092011) 21-28 August 2011. National Hurricane Center, 45 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL092011_Irene.pdf.]

  • Bell, G. D., and Coauthors, 2000: Climate assessment for 1999. Bull. Amer. Meteor. Soc., 81, 13281378, doi:10.1175/1520-0477(2000)081<1328:CAF>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berg, R., 2009: Tropical cyclone report: Hurricane Ike (AL092008) 1-14 September 2008. National Hurricane Center, 55 pp. [Available online at http://www.nhc.noaa.gov/pdf/TCR-AL092008_Ike_3May10.pdf.]

  • Blake, E. S., , T. B. Kimberlain, , R. J. Berg, , J. P. Cangialosi, , and J. L. Bevin II, 2013: Tropical cyclone report: Hurricane Sandy (AL182012) 22-29 October 2012. National Hurricane Center, 157 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf.]

  • Dean, L., , K. A. Emanuel, , and D. R. Chavas, 2009: On the size distribution of Atlantic tropical cyclones. Geophys. Res. Lett., 36, L14803, doi:10.1029/2009GL039051.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 2010: Tropical cyclone intensity change predictability estimates using a statistical-dynamical model. 29th Conf. on Hurricanes and Tropical Meteorology, Tuscon, AZ, Amer. Meteor. Soc., 9C.5. [Available online at https://ams.confex.com/ams/29Hurricanes/techprogram/paper_167916.htm.]

  • DeMaria, M., , and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, doi:10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., , and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14, 326337, doi:10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., , J.-J. Baik, , and J. Kaplan, 1993: Upper-level eddy angular momentum fluxes and tropical cyclone intensity change. J. Atmos. Sci., 50, 11331147, doi:10.1175/1520-0469(1993)050<1133:ULEAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., , M. Mainelli, , L. K. Shay, , J. A. Knaff, , and J. Kaplan, 2005: Further Improvements in the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, doi:10.1175/WAF862.1.

    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., , M. DeMaria, , and J. A. Knaff, 2006: Improvement of Advanced Microwave Sounder Unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45, 15731581, doi:10.1175/JAM2429.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, doi:10.1038/nature03906.

    • Search Google Scholar
    • Export Citation
  • Evans, C., , and R. E. Hart, 2008: Analysis of the wind field evolution associated with the extratropical transition of Bonnie (1998). Mon. Wea. Rev., 136, 20472065, doi:10.1175/2007MWR2051.1.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origins of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., , and J. L. Evans, 2001: A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate, 14, 546564, doi:10.1175/1520-0442(2001)014<0546:ACOTET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., , and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315, doi:10.1175/2009MWR2679.1.

    • Search Google Scholar
    • Export Citation
  • Irish, J. L., , D. T. Resio, , and J. J. Ratcliff, 2008: The influence of storm size on hurricane surge. J. Phys. Oceanogr., 38, 20032013, doi:10.1175/2008JPO3727.1.

    • Search Google Scholar
    • Export Citation
  • Jarvinen, B. R., , C. J. Neumann, , and M. A. S. Davis, 1984: A tropical cyclone data tape for the North Atlantic Basin, 1886-1983: Contents, limitations, and uses. NOAA Tech. Memo. NWS NHC 22, Coral Gables, FL, 21 pp.

  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092, doi:10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kantha, L., 2006: Time to replace the Saffir–Simpson hurricane scale? Eos, Trans. Amer. Geophys. Union, 87, 36, doi:10.1029/2006EO010003.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., , and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, doi:10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., , S. P. Longmore, , and D. A. Molenar, 2014: An objective satellite-based tropical cyclone size climatology. J. Climate, 27, 455476, doi:10.1175/JCLI-D-13-00096.1.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., , and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Maclay, K. S., , M. DeMaria, , and T. H. Vonder Haar, 2008: Tropical cyclone inner-core kinetic energy evolution. Mon. Wea. Rev., 136, 48824898, doi:10.1175/2008MWR2268.1.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., 1995: Tropical cyclone formation. Global Perspectives on Tropical Cyclones, WMO/TD-693, Rep. TCP-38, World Meteorological Organization, 63–105.

  • Misra, V., , S. DiNapoli, , and M. Powell, 2013: The track integrated kinetic energy of Atlantic tropical cyclones. Mon. Wea. Rev., 141, 23832389, doi:10.1175/MWR-D-12-00349.1.

    • Search Google Scholar
    • Export Citation
  • Musgrave, K. D., , R. K. Taft, , J. L. Vigh, , B. D. McNoldy, , and W. H. Schubert, 2012: Time evolution of the intensity and size of tropical cyclones. J. Adv. Model. Earth Syst., 4, M08001, doi:10.1029/2011MS000104.

  • Neumann, C. J., 1987: Prediction of tropical cyclone motion: Some practical aspects. Preprints, 17th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 266269.

  • Powell, M. D., , and T. A. Reinhold, 2007: Tropical cyclone destructive potential by integrated kinetic energy. Bull. Amer. Meteor. Soc., 88, 513526, doi:10.1175/BAMS-88-4-513.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., , S. H. Houston, , L. R. Amat, , and N. Morisseau-Leroy, 1998: The HRD real-time hurricane wind analysis system. J. Wind Eng. Ind. Aerodyn., 77–78, 5364, doi:10.1016/S0167-6105(98)00131-7.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395419, doi:10.1175/2008WAF2222128.1.

    • Search Google Scholar
    • Export Citation
  • Saffir, H., 1975: Low cost construction resistant to earthquakes and hurricanes. ST/ESA/23, United Nations, 216 pp.

  • Schade, L. R., , and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642651, doi:10.1175/1520-0469(1999)056<0642:TOSEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simpson, R. H., 1974: The hurricane disaster potential scale. Weatherwise, 27, 169186, doi:10.1080/00431672.1974.9931702.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15 15 3
PDF Downloads 8 8 1

Statistical Prediction of Integrated Kinetic Energy in North Atlantic Tropical Cyclones

View More View Less
  • 1 Center for Ocean–Atmospheric Prediction Studies, Florida State University, Tallahassee, Florida
© Get Permissions
Restricted access

Abstract

Integrated kinetic energy (IKE) is a useful quantity that measures the size and strength of a tropical cyclone wind field. As a result, it is inherently related to the destructive potential of these powerful storms. In most current operational settings, there are limited resources designed to assess the IKE of a tropical cyclone because storm track and maximum intensity are typically prioritized. Therefore, to complement existing forecasting tools, a statistical scheme is created to project fluctuations of IKE in North Atlantic tropical cyclones for several forecast intervals out to 72 h. The resulting scheme, named Statistical Prediction of Integrated Kinetic Energy (SPIKE), utilizes multivariate normal regression models trained on environmental and storm-related predictors from all North Atlantic tropical cyclones occurring from 1990 to 2011. During this training interval, SPIKE outperforms persistence and is capable of explaining more than 80% of observed variance in total IKE values at a forecast interval of 12 h, trailing down to just below 60% explained variance at an interval of 72 h. The skill of the SPIKE model is evaluated further using bootstrapping exercises in order to gauge the predictive abilities of the statistical scheme. In addition, the performance of the SPIKE model is also evaluated for the 2012 Atlantic hurricane season, which notably falls outside of the training interval. Ultimately, the validation exercises return shared variance scores similar to those found in the training exercises, serving as a proof of concept that the SPIKE model can be used to project IKE values when given accurate predictor data.

Corresponding author address: Michael Kozar, Center for Ocean–Atmospheric Prediction Studies, Florida State University, 2000 Levy Ave., Building A, Suite 292, Tallahassee, FL 32306-2741. E-mail: mkozar@coaps.fsu.edu

Abstract

Integrated kinetic energy (IKE) is a useful quantity that measures the size and strength of a tropical cyclone wind field. As a result, it is inherently related to the destructive potential of these powerful storms. In most current operational settings, there are limited resources designed to assess the IKE of a tropical cyclone because storm track and maximum intensity are typically prioritized. Therefore, to complement existing forecasting tools, a statistical scheme is created to project fluctuations of IKE in North Atlantic tropical cyclones for several forecast intervals out to 72 h. The resulting scheme, named Statistical Prediction of Integrated Kinetic Energy (SPIKE), utilizes multivariate normal regression models trained on environmental and storm-related predictors from all North Atlantic tropical cyclones occurring from 1990 to 2011. During this training interval, SPIKE outperforms persistence and is capable of explaining more than 80% of observed variance in total IKE values at a forecast interval of 12 h, trailing down to just below 60% explained variance at an interval of 72 h. The skill of the SPIKE model is evaluated further using bootstrapping exercises in order to gauge the predictive abilities of the statistical scheme. In addition, the performance of the SPIKE model is also evaluated for the 2012 Atlantic hurricane season, which notably falls outside of the training interval. Ultimately, the validation exercises return shared variance scores similar to those found in the training exercises, serving as a proof of concept that the SPIKE model can be used to project IKE values when given accurate predictor data.

Corresponding author address: Michael Kozar, Center for Ocean–Atmospheric Prediction Studies, Florida State University, 2000 Levy Ave., Building A, Suite 292, Tallahassee, FL 32306-2741. E-mail: mkozar@coaps.fsu.edu
Save