• Antonescu, B., , and S. Burcea, 2010: A cloud-to-ground lightning climatology for Romania. Mon. Wea. Rev., 138, 579–591, doi:10.1175/2009MWR2975.1.

    • Search Google Scholar
    • Export Citation
  • Biagi, C. J., , K. L. Cummins, , K. E. Kehoe, , and E. P. Krider, 2007: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004. J. Geophys. Res., 112, D05208, doi:10.1029/2006JD007341.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., and Coauthors, 2000: The Optical Transient Detector (OTD): Instrument characteristics and cross-sensor validation. J. Atmos. Oceanic Technol., 17, 441458, doi:10.1175/1520-0426(2000)017<0441:TOTDOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bourscheidt, V., , K. L. Cummins, , O. Pinto Jr., , and K. P. Naccarato, 2012: Methods to overcome lightning location system performance limitations on spatial and temporal analysis: Brazilian case. J. Atmos. Oceanic Technol., 29, 13041311, doi:10.1175/JTECH-D-11-00213.1.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., 2014: Mapping the impact of terrain on lightning incidence and multiple ground contacts in cloud-to-ground flashes. Proc. 15th Int. Conf. on Atmospheric Electricity, Norman, OK, ICAE, 16 pp. [Available online at http://www.nssl.noaa.gov/users/mansell/icae2014/preprints/Cummins_68.pdf.]

  • Cummins, K. L., , and M. J. Murphy, 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat., 51 (3), 499518, doi:10.1109/TEMC.2009.2023450.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., , M. J. Murphy, , E. A. Bardo, , W. L. Hiscox, , R. B. Pyle, , and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103, 90359044, doi:10.1029/98JD00153.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., , J. A. Cramer, , C. Biagi, , E. P. Krider, , J. Jerauld, , M. A. Uman, , and V. A. Rakov, 2006: The U.S. National Lightning Detection Network: Post-upgrade status. Second Conf. on Meteorological Applications of Lightning Data, Atlanta, GA, Amer. Meteor. Soc., 6.1. [Available online at https://ams.confex.com/ams/Annual2006/techprogram/paper_105142.htm.]

  • Diendorfer, G., , H. Zhou, , and H. Pichler, 2011: Review of 10 years of lightning measurement at the Gaisberg Tower in Austria. Proc. Third Int. Symp. on Winter Lightning, Sapporo, Japan, ISWL, 6 pp.

  • Ducrocq, V., and Coauthors, 2013: HyMeX-SOP1: The field campaign dedicated to heavy precipitation and flash flooding in the northwestern Mediterranean. Bull. Amer. Meteor. Soc., 95, 1083–1100, doi:10.1175/BAMS-D-12-00244.1.

    • Search Google Scholar
    • Export Citation
  • Dwyer, J. R., , M. Schaal, , H. K. Rassoul, , M. A. Uman, , D. M. Jordan, , and D. Hill, 2011: High-speed X-ray images of triggered lightning dart leaders. J. Geophys. Res., 116, D20208, doi:10.1029/2011JD015973.

    • Search Google Scholar
    • Export Citation
  • Finke, U., , and T. Hauf, 1996: The characteristics of lightning occurrence in Southern Germany. Beitr. Phys. Atmos., 69 (3), 361374.

  • Fleenor, S. A., , C. J. Biagi, , K. L. Cummins, , E. P. Krider, , and X.-M. Shao, 2009: Characteristics of cloud-to-ground lightning in warm-season thunderstorms in the central Great Plains. Atmos. Res., 91, 333352, doi:10.1016/j.atmosres.2008.08.011.

    • Search Google Scholar
    • Export Citation
  • Goudenhoofdt, E., , and L. Delobbe, 2013: Statistical characteristics of convective storms in Belgium derived from volumetric weather radar observations. J. Appl. Meteor. Climatol., 52, 918934, doi:10.1175/JAMC-D-12-079.1.

    • Search Google Scholar
    • Export Citation
  • Grant, M. D., , K. J. Nixon, , and I. R. Jandrell, 2012: Positive polarity: Missclassification between intracloud and cloud-to-ground discharges in the Southern African Lightning Detection Network. Proc. 22nd Int. Lightning Detection Conf., Broomfield, CO, Vaisala, 5 pp. [Available online at http://www.vaisala.com/en/events/ildcilmc/Pages/ILDC-2012-archive.aspx.]

  • Hagen, M., , J. van Baelen, , and E. Richard, 2011: Influence of the wind profile on the initiation of convection in mountainous terrain. Quart. J. Roy. Meteor. Soc., 137, 224235, doi:10.1002/qj.784.

    • Search Google Scholar
    • Export Citation
  • Huffines, G. R., , and R. E. Orville, 1999: Lightning ground flash density and thunderstorm duration in the continental United States: 1989–96. J. Appl. Meteor., 38, 10131019, doi:10.1175/1520-0450(1999)038<1013:LGFDAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jacobson, A. R., , R. Holzworth, , J. Harlin, , R. Dowden, , and E. Lay, 2006: Performance assessment of the World Wide Lightning Location Network (WWLLN), using the Los Alamos Sferic Array (LASA) as ground truth. J. Atmos. Oceanic Technol., 23, 10821092, doi:10.1175/JTECH1902.1.

    • Search Google Scholar
    • Export Citation
  • Jerauld, J., , V. A. Rakov, , M. A. Uman, , K. J. Rambo, , D. M. Jordan, , K. L. Cummins, , and J. A. Cramer, 2005: An evaluation of the performance characteristics of the U.S. National Lightning Detection Network in Florida using rocket-triggered lightning. J. Geophys. Res., 110, D19106, doi:10.1029/2005JD005924.

    • Search Google Scholar
    • Export Citation
  • Keogh, S. J., , E. Hibbett, , J. Nash, , and J. Eyre, 2006: The Met Office Arrival Time Difference (ATD) system for thunderstorms detection and lightning location. Forecasting Research Tech. Rep. 488, 22 pp.

  • Kottmeier, C., and Coauthors, 2008: Mechanisms initiating deep convection over complex terrain during COPS. Meteor. Z., 17, 931948, doi:10.1127/0941-2948/2008/0348.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., , R. J. Thomas, , W. Rison, , T. Hamlin, , J. Harlin, , and M. Davis, 1999: Three-dimensional lightning mapping observations during MEAPRS in central Oklahoma. Proc. 11th Int. Conf. on Atmospheric Electricity, NASA Conf. Publ. 1999-209261, Guntersville, AL, NASA, 376–379.

  • Kuk, B. J., , H. I. Kim, , J. S. Ha, , and H. K. Lee, 2011: Intercomparison study of cloud-to-ground lightning flashes observed by KARITLDS and KLDN at South Lorea. J. Appl. Meteor. Climatol., 50, 224232, doi:10.1175/2010JAMC2493.1.

    • Search Google Scholar
    • Export Citation
  • Mäkelä, A., , S.-E. Enno, , and J. Haapalainen, 2014: Nordic lightning information system: Thunderstorm climate of Northern Europe for the period 2002-2011. Atmos. Res., 139, 4661, doi:10.1016/j.atmosres.2014.01.008.

    • Search Google Scholar
    • Export Citation
  • Meyer, V., , H. Höller, , K. Schmidt, , and H.-D. Betz, 2009: Temporal evolution of total lightning and radar parameters of thunderstorms in southern Germany and its benefit for nowcasting. Proc. Fifth European Conf. on Severe Storms (ECSS), Landshut, Germany, European Severe Storm Laboratory, 2 pp.

  • Meyer, V., , H. Höller, , and H.-D. Betz, 2013a: Automated thunderstorm tracking: Utilization of three-dimensional lightning and radar data. Atmos. Chem. Phys., 13, 51375150, doi:10.5194/acp-13-5137-2013.

    • Search Google Scholar
    • Export Citation
  • Meyer, V., , H. Höller, , and H.-D. Betz, 2013b: The temporal evolution of three-dimensional lightning parameters and their suitability for thunderstorm tracking and nowcasting. Atmos. Chem. Phys., 13, 51515161, doi:10.5194/acp-13-5151-2013.

    • Search Google Scholar
    • Export Citation
  • Orville, H. D., 1965: A photogrammetric study of the initiation of cumulus clouds over mountainous terrain. J. Atmos. Sci., 22, 700709, doi:10.1175/1520-0469(1965)022<0700:APSOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., 1991: Lightning ground flash density in the contiguous United States—1989. Mon. Wea. Rev., 119, 573577, doi:10.1175/1520-0493(1991)119<0573:LGFDIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., 2001: Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Mon. Wea. Rev., 129, 11791193, doi:10.1175/1520-0493(2001)129<1179:CTGLIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., 2008: Development of the National Lightning Detection Network. Bull. Amer. Meteor. Soc., 89, 180190, doi:10.1175/BAMS-89-2-180.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., , and A. C. Silver, 1997: Lightning ground flash density in the contiguous United States: 1992–95. Mon. Wea. Rev., 125, 631638, doi:10.1175/1520-0493(1997)125<0631:LGFDIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., , and G. R. Huffines, 1999: Lightning ground flash measurements over the contiguous United States: 1995–97. Mon. Wea. Rev., 127, 26932703, doi:10.1175/1520-0493(1999)127<2693:LGFMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., , G. Huffines, , W. Burrows, , R. Holle, , and K. Cummins, 2002: The North American Lightning Detection Network (NLDN)—First results: 1998–2000. Mon. Wea. Rev., 130, 20982108, doi:10.1175/1520-0493(2002)130<2098:TNALDN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pinto, I. R. C. A., , O. Pinto Jr., , R. M. L. Rocha, , J. H. Diniz, , A. M. Carvalho, , and A. C. Filho, 1999b: Cloud-to-ground lightning in southeastern Brazil in 1993: 2. Time variations and flash characteristics. J. Geophys. Res., 104, 31 381–31 387, doi:10.1029/1999JD900799.

    • Search Google Scholar
    • Export Citation
  • Pinto, O., Jr., , I. R. C. A. Pinto, , M. A. S. S. Gomes, , I. Vitorello, , A. L. Padilha, , J. H. Diniz, , A. M. Carvalho, , and A. C. Filho, 1999a: Cloud-to-ground lightning in southeastern Brazil in 1993: 1. Geographical distribution. J. Geophys. Res., 104, 31 369–31 379, doi:10.1029/1999JD900800.

    • Search Google Scholar
    • Export Citation
  • Poelman, D. R., , L. Delobbe, , M. Crabbé, , and C. Bouquegneau, 2012: Lightning activity in Belgium during 2001–2011. Proc. 31st Int. Conf. on Lightning Protection, Vienna, Austria, ICLP, 5 pp.

  • Poelman, D. R., , W. Schulz, , and C. Vergeiner, 2013: Performance characteristics of distinct lightning detection networks covering Belgium. J. Atmos. Oceanic Technol., 30, 942951, doi:10.1175/JTECH-D-12-00162.1.

    • Search Google Scholar
    • Export Citation
  • Rakov, V. A., , and M. A. Uman, 1990: Long continuing current in negative lightning ground flashes. J. Geophys. Res., 95, 54555470, doi:10.1029/JD095iD05p05455.

    • Search Google Scholar
    • Export Citation
  • Rison, W. R., , R. Scott, , R. J. Thomas, , P. R. Krehbiel, , T. Hamlin, , and J. Harlin, 1999: 3-dimensional lightning and dual-polarization observations of thunderstorms in central New Mexico. Proc. 11th Int. Conf. on Atmospheric Electricity, NASA Conf. Publ. 1999-209261, Guntersville, AL, NASA, 432–435.

  • Rison, W. R., , W. P. Krehbiel, , R. Thomas, , T. Hamlin, , and J. Harlin, 2000: A time-of-arrival lightning mapping system with high time resolution. Eos, Trans. Amer. Geophys. Union,81 (Fall Meeting Suppl.), Abstract A52C-01.

  • Saba, M. M. F., , O. Pinto Jr., , and M. G. Ballarotti, 2006: Relation between lightning return stroke peak current and following continuing current. Geophys. Res. Lett., 33, L23807, doi:10.1029/2006GL027455.

    • Search Google Scholar
    • Export Citation
  • Said, R. K., , U. S. Inan, , and K. L. Cummins, 2010: Long-range lightning geolocation using a VLF radio atmospheric waveform bank. J. Geophys. Res., 115, D23108, doi:10.1029/2010JD013863.

    • Search Google Scholar
    • Export Citation
  • Said, R. K., , M. J. Murphy, , N. W. S. Demetriades, , K. L. Cummins, , and U. S. Inan, 2011: Methodology and performance estimates of the GLD360 lightning detection network. Proc. 14th Int. Conf. on Atmospheric Electricity, Rio de Janeiro, Brazil, ICAE, 4 pp.

  • Santos, J. A., , M. A. Reis, , J. Sousa, , S. M. Leite, , S. Correia, , M. Janeira, , and M. Fragoso, 2012: Cloud-to-ground lightning in Portugal: Patterns and dynamical forcing. Nat. Hazards Earth Syst. Sci., 12, 639649, doi:10.5194/nhess-12-639-2012.

    • Search Google Scholar
    • Export Citation
  • Schulz, W., , K. Cummins, , G. Diendorfer, , and M. Dorninger, 2005: Cloud-to-ground lightning in Austria: A 10-year study using data from a lightning location system. J. Geophys. Res., 110, D09101, doi:10.1029/2004JD005332.

    • Search Google Scholar
    • Export Citation
  • Schulz, W., , H. Pichler, , and G. Diendorfer, 2010: Evaluation of 45 negative flashes based on E-field measurements, video data and lightning location data in Austria. Proc. 30th Int. Conf. on Lightning Protection, Cagliari, Italy, Power and Energy Society, 2011-1-1014.

  • Schulz, W., , C. Vergeiner, , H. Pichler, , G. Diendorfer, , and K. Cummins, 2012: Location accuracy evaluation of the Austrian lightning locations system ALDIS. Proc. 22nd Int. Lightning Detection Conf., Broomfield, CO, Vaisala, 5 pp.

  • Schulz, W., , D. Poelman, , S. Pédeboy, , C. Vergeiner, , H. Pichler, , G. Diendorfer, , and S. Pack, 2014: Performance validation of the European Lightning Location System EUCLID. Proc. Int. Colloquium on Lightning and Power Systems, Lyon, France, CIGRE, 9 pp.

  • Rivas Soriano, L., , F. de Pablo, , and C. Tomas, 2005: Ten-year study of cloud-to-ground lightning activity in the Iberian Peninsula. J. Atmos. Sol.-Terr. Phys., 67, 16321639, doi:10.1016/j.jastp.2005.08.019.

    • Search Google Scholar
    • Export Citation
  • Thomas, R. J., , P. R. Krehbiel, , W. Rison, , T. Hamlin, , D. J. Boccippio, , S. J. Goodman, , and H. J. Christian, 2000: Comparison of ground-based 3-dimensional lightning mapping observations with satellite-based LIS observations in Oklahoma. Geophys. Res. Lett., 27, 17031706, doi:10.1029/1999GL010845.

    • Search Google Scholar
    • Export Citation
  • Tuomi, T. J., , and A. Mäkelä, 2008: Thunderstorm climate of Finland 1998–2007. Geophysica, 44, 6780.

  • Wacker, R., , and R. Orville, 1999a: Changes in measured lightning flash count and return stroke peak current after the 1994 U.S. National Lightning Detection Network upgrade: 1. Observations. J. Geophys. Res., 104, 21512157, doi:10.1029/1998JD200060.

    • Search Google Scholar
    • Export Citation
  • Wacker, R., , and R. Orville, 1999b: Changes in measured lightning flash count and return stroke peak current after the 1994 U.S. National Lightning Detection Network Upgrade: 2. Theory. J. Geophys. Res., 104, 21592162, doi:10.1029/1998JD200059.

    • Search Google Scholar
    • Export Citation
  • Zajac, B. A., , and S. A. Rutledge, 2001: Cloud-to-ground lightning activity in the contiguous United States from 1995 to 1999. Mon. Wea. Rev., 129, 9991019, doi:10.1175/1520-0493(2001)129<0999:CTGLAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 35 35 7
PDF Downloads 28 28 7

A 10-Year Study on the Characteristics of Thunderstorms in Belgium Based on Cloud-to-Ground Lightning Data

View More View Less
  • 1 Royal Meteorological Institute of Belgium, Brussels, Belgium
© Get Permissions
Restricted access

Abstract

Temporal and spatial distributions of cloud-to-ground (CG) lightning in Belgium are analyzed. Based on data from the European Cooperation for Lightning Detection (EUCLID) network, spanning a period of 10 years between 2004 and 2013, mean CG flash densities vary between 0.3 km−2 yr−1 in the west up to 2.4 km−2 yr−1 toward the east of Belgium, with an average flash density of 0.7 km−2 yr−1. The same behavior is found in terms of thunderstorm days and hours, where in the east most of the activity is observed, with a drop-off toward the coast. The majority of lightning activity takes place in the summer months between May and August, accounting for nearly 90% of the total activity. Furthermore, the thunderstorm season reaches its highest activity in July in terms of CG detections, while the diurnal cycle peaks between 1500 and 1600 UTC. A correlation is found between the estimated peak currents and altitude, with on average higher absolute peak currents at lower elevations and vice versa. In addition, a cell tracking algorithm is applied to the data to monitor the behavior of the individual cells. It is found that the lightning cells travel at an average speed of about 25 km h−1, with a preferred northeasterly direction of movement. At last, CG flash rates are strongly related to the cell area.

Corresponding author address: Dieter R. Poelman, Royal Meteorological Institute, Ringlaan 3 Avenue Circulaire, B-1180 Brussels, Belgium. E-mail: dieter.poelman@meteo.be

Abstract

Temporal and spatial distributions of cloud-to-ground (CG) lightning in Belgium are analyzed. Based on data from the European Cooperation for Lightning Detection (EUCLID) network, spanning a period of 10 years between 2004 and 2013, mean CG flash densities vary between 0.3 km−2 yr−1 in the west up to 2.4 km−2 yr−1 toward the east of Belgium, with an average flash density of 0.7 km−2 yr−1. The same behavior is found in terms of thunderstorm days and hours, where in the east most of the activity is observed, with a drop-off toward the coast. The majority of lightning activity takes place in the summer months between May and August, accounting for nearly 90% of the total activity. Furthermore, the thunderstorm season reaches its highest activity in July in terms of CG detections, while the diurnal cycle peaks between 1500 and 1600 UTC. A correlation is found between the estimated peak currents and altitude, with on average higher absolute peak currents at lower elevations and vice versa. In addition, a cell tracking algorithm is applied to the data to monitor the behavior of the individual cells. It is found that the lightning cells travel at an average speed of about 25 km h−1, with a preferred northeasterly direction of movement. At last, CG flash rates are strongly related to the cell area.

Corresponding author address: Dieter R. Poelman, Royal Meteorological Institute, Ringlaan 3 Avenue Circulaire, B-1180 Brussels, Belgium. E-mail: dieter.poelman@meteo.be
Save