• Bechtold, P., , J.-P. Chaboureau, , A. Beljaars, , A. K. Betts, , M. Köhler, , M. Miller, , and J.-L. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31193137, doi:10.1256/qj.03.103.

    • Search Google Scholar
    • Export Citation
  • Carpenter, T. H., 1963: The distribution of the semidiurnal pressure oscillation on the Antarctic continent. J. Geophys. Res., 68, 22112215, doi:10.1029/JZ068i008p02211.

    • Search Google Scholar
    • Export Citation
  • Chapman, S., , and R. Lindzen, 1970: Atmospheric Tides. D. Reidel, 200 pp.

  • Compo, G. P., and Coauthors, 2010: International Surface Pressure Databank (ISPDv2) 1768 to 2010. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, CO, digital media, doi:10.5065/D6SQ8XDW.

  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Covey, C., , A. Dai, , D. Marsh, , and R. S. Lindzen, 2011: The surface-pressure signature of atmospheric tides in modern climate models. J. Atmos. Sci., 68, 495514, doi:10.1175/2010JAS3560.1.

    • Search Google Scholar
    • Export Citation
  • Covey, C., , A. Dai, , R. S. Lindzen, , and D. R. Marsh, 2014: Atmospheric tides in the latest generation of climate models. J. Atmos. Sci., 71, 19051913, doi:10.1175/JAS-D-13-0358.1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , and J. Wang, 1999: Diurnal and semidiurnal tides in global surface pressure fields. J. Atmos. Sci., 56, 38743891, doi:10.1175/1520-0469(1999)056<3874:DASTIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17, 930951, doi:10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ebita, A., and Coauthors, 2011: The Japanese 55-year Reanalysis “JRA-55”: An interim report. SOLA, 7, 149152, doi:10.2151/sola.2011-038.

    • Search Google Scholar
    • Export Citation
  • Forbes, J. M., , and H. B. Garrett, 1979: Theoretical studies of atmospheric tides. Rev. Geophys., 17, 19511984, doi:10.1029/RG017i008p01951.

    • Search Google Scholar
    • Export Citation
  • Hagan, M. E., , and J. M. Forbes, 2002: Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res., 107, 4754, doi:10.1029/2001JD001236.

    • Search Google Scholar
    • Export Citation
  • Hagan, M. E., , and J. M. Forbes, 2003: Migrating and nonmigrating semidiurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res., 108, 1062, doi:10.1029/2002JA009466.

    • Search Google Scholar
    • Export Citation
  • Hagan, M. E., , J. M. Forbes, , and A. Richmond, 2003: Atmospheric tides. Encyclopedia of Atmospheric Sciences, J. Holton, J. Pyle, and J. Curry, Eds., 1st ed. Academic Press, 159–165.

  • Hamilton, K., 1980a: Observations of the solar diurnal and semidiurnal surface pressure oscillations in Canada. Atmos.–Ocean, 18, 8997, doi:10.1080/07055900.1980.9649080.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., 1980b: The geographical distribution of the solar semidiurnal surface pressure oscillation. J. Geophys. Res., 85, 19451949, doi:10.1029/JC085iC04p01945.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., , S. C. Ryan, , and W. Ohfuchi, 2008: Topographic effects on the solar semidiurnal surface tide simulated in a very fine resolution general circulation model. J. Geophys. Res., 113, D17114, doi:10.1029/2008JD010115.

    • Search Google Scholar
    • Export Citation
  • Haurwitz, B., 1956: The geographical distribution of the solar semidiurnal pressure oscillation. N. Y. Univ. Coll. Eng. Meteor. Pap., 2 (5), 136.

    • Search Google Scholar
    • Export Citation
  • Haurwitz, B., , and A. D. Cowley, 1973: The diurnal and semidiurnal barometric oscillations, global distribution and annual variation. Pure Appl. Geophys., 102, 193222, doi:10.1007/BF00876607.

    • Search Google Scholar
    • Export Citation
  • Hsu, H. H., , and B. J. Hoskins, 1989: Tidal fluctuations as seen in ECMWF data. Quart. J. Roy. Meteor. Soc., 115, 247264, doi:10.1002/qj.49711548603.

    • Search Google Scholar
    • Export Citation
  • Jin, S., , O. F. Luo, , and S. Gleason, 2009: Characterization of diurnal cycles in ZTD from a decade of global GPS observations. J. Geod., 83, 537545, doi:10.1007/s00190-008-0264-3.

    • Search Google Scholar
    • Export Citation
  • Kong, C.-W., 1995: Diurnal pressure variations over continental Australia. Aust. Meteor. Mag., 44, 165175.

  • Li, Y., , R. B. Smith, , and V. Grubišić, 2009: Using surface pressure variations to categorize diurnal valley circulations: Experiments in Owens Valley. Mon. Wea. Rev., 137, 17531769, doi:10.1175/2008MWR2495.1.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., , W. J. Steenburgh, , and D. M. Schultz, 1991: Diurnal surface-pressure variations over the continental United States and the influence of sea level reduction. Mon. Wea. Rev., 119, 28142830, doi:10.1175/1520-0493(1991)119<2814:DSPVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nuss, W. A., , and D. W. Titley, 1994: Use of multiquadric interpolation for meteorological objective analysis. Mon. Wea. Rev., 122, 16111631, doi:10.1175/1520-0493(1994)122<1611:UOMIFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Persson, A., 2011: User guide to ECMWF forecast products. ECMWF Publ., 119 pp. [Available online at http://old.ecmwf.int/newsevents/meetings/forecast_products_user/Guide_2011-print.pdf.].

  • Petrov, L., , and J.-P. Boy, 2004: Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J. Geophys. Res., 109, B03405, doi:10.1029/2003JB002500.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., 1998: Diurnal oscillations in atmospheric pressure at twenty-five small oceanic islands. Geophys. Res. Lett., 25, 38513854, doi:10.1029/1998GL900039.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., 2001: Comparisons of global analyses and station observations of the S2 barometric tide. J. Atmos. Sol.-Terr. Phys., 63, 10851097, doi:10.1016/S1364-6826(01)00018-9.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., , and R. M. Ponte, 2003: Barometric tides from ECMWF operational analyses. Ann. Geophys., 21, 18971910, doi:10.5194/angeo-21-1897-2003.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., , and S. Poulose, 2005: Terdiurnal surface-pressure oscillations over the continental United States. Mon. Wea. Rev., 133, 25262534, doi:10.1175/MWR2988.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Sato, T., , T. Yoshikane, , M. Satoh, , H. Miura, , and H. Fujinami, 2008: Resolution dependency of the diurnal cycle of convective clouds over the Tibetan plateau in a mesoscale model. J. Meteor. Soc. Japan, 86A, 1731, doi:10.2151/jmsj.86A.17.

    • Search Google Scholar
    • Export Citation
  • Schindelegger, M., 2014: Atmosphere-induced short period variations of Earth rotation. Geowissenschaftliche Mitteilungen Heft 96, Vienna University of Technology, 152 pp. [Available online at http://publik.tuwien.ac.at/files/PubDat_228266.pdf.]

  • Simpson, G. C., 1918: The twelve-hourly barometer oscillation. Quart. J. Roy. Meteor. Soc., 44, 119, doi:10.1002/qj.49704418501.

  • Stone, M., 1974: Cross-validatory choice and assessment of statistical predictions. J. Roy. Stat. Soc.,36B (2), 111147.

  • Tsuda, T., , and S. Kato, 1989: Diurnal nonmigrating tides excited by a differential heating due to land-sea distribution. J. Meteor. Soc. Japan, 67, 4355.

    • Search Google Scholar
    • Export Citation
  • Ueyama, R., , and C. Deser, 2008: A climatology of diurnal and semidiurnal surface wind variations over the tropical Pacific Ocean based on the tropical atmosphere ocean moored buoy array. J. Climate, 21, 593607, doi:10.1175/JCLI1666.1.

    • Search Google Scholar
    • Export Citation
  • van den Dool, H. M., , S. Saha, , J. Schemm, , and J. Huang, 1997: A temporal interpolation method to obtain hourly atmospheric surface pressure tides in Reanalysis 1979–1995. J. Geophys. Res., 102, 22 01322 024, doi:10.1029/97JD01571.

    • Search Google Scholar
    • Export Citation
  • Watson, D., 1999: The natural neighbor series manuals and source codes. Comput. Geosci., 25, 463466, doi:10.1016/S0098-3004(98)00150-2.

    • Search Google Scholar
    • Export Citation
  • Yseboodt, M., , O. de Viron, , T. M. Chin, , and V. Dehant, 2002: Atmospheric excitation of the Earth’s nutation: Comparison of different atmospheric models. J. Geophys. Res., 107, 2036, doi:10.1029/2000JB000042.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , J. M. Forbes, , M. E. Hagan, , J. M. Russell III, , S. E. Palo, , C. J. Mertens, , and M. G. Mlynczak, 2006: Monthly tidal temperatures 20–120 km from TIMED/SABER. J. Geophys. Res., 111, A10S08, doi:10.1029/2005JA011504.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F., , and K. Hamilton, 1986: Simulation of solar tides in the Canadian Climate Centre general circulation model. J. Geophys. Res., 91, 11 87711 896, doi:10.1029/JD091iD11p11877.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 57 57 13
PDF Downloads 36 36 9

Surface Pressure Tide Climatologies Deduced from a Quality-Controlled Network of Barometric Observations

View More View Less
  • 1 Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria
  • 2 NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

Global “ground truth” knowledge of solar diurnal S1 and semidiurnal S2 surface pressure tides as furnished by barometric in situ observations represents a valuable standard for wide-ranging geophysical and meteorological applications. This study attempts to aid validations of the air pressure tide signature in current climate or atmospheric analysis models by developing a new global assembly of nearly 6900 mean annual S1 and S2 estimates on the basis of station and marine barometric reports from the International Surface Pressure Databank, version 2 (ISPDv2), for a principal time span of 1990–2010. Previously published tidal compilations have been limited by inadequate spatial coverage or by internal inconsistencies and outliers from suspect tidal analyses; here, these problems are mostly overcome through 1) automated data filtering under ISPDv2’s quality-control framework and 2) a meticulously conducted visual inspection of station harmonic decompositions. The quality of the resulting compilation is sufficient to support global interpolation onto a reasonably fine mesh of 1° horizontal spacing. A multiquadric interpolation algorithm, with parameters fine-tuned by frequency and for land or ocean regions, is employed. Global charts of the gridded surface pressure climatologies are presented, and these are mapped to a wavenumber versus latitude spectrum for comparison with long-term means of S1 and S2 from four present-day atmospheric analysis systems. This cross verification, shown to be feasible even for the minor stationary modes of the tides, reveals a small but probably significant overestimation of up to 18% for peak semidiurnal amplitudes as predicted by global analysis models.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-14-00217.s1.

Corresponding author address: Michael Schindelegger, Department of Geodesy and Geoinformation, Vienna University of Technology, Gußhausstraße 27-29, A-1040 Vienna, Austria. E-mail: michael.schindelegger@tuwien.ac.at

Abstract

Global “ground truth” knowledge of solar diurnal S1 and semidiurnal S2 surface pressure tides as furnished by barometric in situ observations represents a valuable standard for wide-ranging geophysical and meteorological applications. This study attempts to aid validations of the air pressure tide signature in current climate or atmospheric analysis models by developing a new global assembly of nearly 6900 mean annual S1 and S2 estimates on the basis of station and marine barometric reports from the International Surface Pressure Databank, version 2 (ISPDv2), for a principal time span of 1990–2010. Previously published tidal compilations have been limited by inadequate spatial coverage or by internal inconsistencies and outliers from suspect tidal analyses; here, these problems are mostly overcome through 1) automated data filtering under ISPDv2’s quality-control framework and 2) a meticulously conducted visual inspection of station harmonic decompositions. The quality of the resulting compilation is sufficient to support global interpolation onto a reasonably fine mesh of 1° horizontal spacing. A multiquadric interpolation algorithm, with parameters fine-tuned by frequency and for land or ocean regions, is employed. Global charts of the gridded surface pressure climatologies are presented, and these are mapped to a wavenumber versus latitude spectrum for comparison with long-term means of S1 and S2 from four present-day atmospheric analysis systems. This cross verification, shown to be feasible even for the minor stationary modes of the tides, reveals a small but probably significant overestimation of up to 18% for peak semidiurnal amplitudes as predicted by global analysis models.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-14-00217.s1.

Corresponding author address: Michael Schindelegger, Department of Geodesy and Geoinformation, Vienna University of Technology, Gußhausstraße 27-29, A-1040 Vienna, Austria. E-mail: michael.schindelegger@tuwien.ac.at

Supplementary Materials

    • Supplemental Materials (PDF 2.02 MB)
Save