Surface Pressure Tide Climatologies Deduced from a Quality-Controlled Network of Barometric Observations

Michael Schindelegger Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria

Search for other papers by Michael Schindelegger in
Current site
Google Scholar
PubMed
Close
and
Richard D. Ray NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Richard D. Ray in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Global “ground truth” knowledge of solar diurnal S1 and semidiurnal S2 surface pressure tides as furnished by barometric in situ observations represents a valuable standard for wide-ranging geophysical and meteorological applications. This study attempts to aid validations of the air pressure tide signature in current climate or atmospheric analysis models by developing a new global assembly of nearly 6900 mean annual S1 and S2 estimates on the basis of station and marine barometric reports from the International Surface Pressure Databank, version 2 (ISPDv2), for a principal time span of 1990–2010. Previously published tidal compilations have been limited by inadequate spatial coverage or by internal inconsistencies and outliers from suspect tidal analyses; here, these problems are mostly overcome through 1) automated data filtering under ISPDv2’s quality-control framework and 2) a meticulously conducted visual inspection of station harmonic decompositions. The quality of the resulting compilation is sufficient to support global interpolation onto a reasonably fine mesh of 1° horizontal spacing. A multiquadric interpolation algorithm, with parameters fine-tuned by frequency and for land or ocean regions, is employed. Global charts of the gridded surface pressure climatologies are presented, and these are mapped to a wavenumber versus latitude spectrum for comparison with long-term means of S1 and S2 from four present-day atmospheric analysis systems. This cross verification, shown to be feasible even for the minor stationary modes of the tides, reveals a small but probably significant overestimation of up to 18% for peak semidiurnal amplitudes as predicted by global analysis models.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-14-00217.s1.

Corresponding author address: Michael Schindelegger, Department of Geodesy and Geoinformation, Vienna University of Technology, Gußhausstraße 27-29, A-1040 Vienna, Austria. E-mail: michael.schindelegger@tuwien.ac.at

Abstract

Global “ground truth” knowledge of solar diurnal S1 and semidiurnal S2 surface pressure tides as furnished by barometric in situ observations represents a valuable standard for wide-ranging geophysical and meteorological applications. This study attempts to aid validations of the air pressure tide signature in current climate or atmospheric analysis models by developing a new global assembly of nearly 6900 mean annual S1 and S2 estimates on the basis of station and marine barometric reports from the International Surface Pressure Databank, version 2 (ISPDv2), for a principal time span of 1990–2010. Previously published tidal compilations have been limited by inadequate spatial coverage or by internal inconsistencies and outliers from suspect tidal analyses; here, these problems are mostly overcome through 1) automated data filtering under ISPDv2’s quality-control framework and 2) a meticulously conducted visual inspection of station harmonic decompositions. The quality of the resulting compilation is sufficient to support global interpolation onto a reasonably fine mesh of 1° horizontal spacing. A multiquadric interpolation algorithm, with parameters fine-tuned by frequency and for land or ocean regions, is employed. Global charts of the gridded surface pressure climatologies are presented, and these are mapped to a wavenumber versus latitude spectrum for comparison with long-term means of S1 and S2 from four present-day atmospheric analysis systems. This cross verification, shown to be feasible even for the minor stationary modes of the tides, reveals a small but probably significant overestimation of up to 18% for peak semidiurnal amplitudes as predicted by global analysis models.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-14-00217.s1.

Corresponding author address: Michael Schindelegger, Department of Geodesy and Geoinformation, Vienna University of Technology, Gußhausstraße 27-29, A-1040 Vienna, Austria. E-mail: michael.schindelegger@tuwien.ac.at

Supplementary Materials

    • Supplemental Materials (PDF 2.02 MB)
Save
  • Bechtold, P., J.-P. Chaboureau, A. Beljaars, A. K. Betts, M. Köhler, M. Miller, and J.-L. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31193137, doi:10.1256/qj.03.103.

    • Search Google Scholar
    • Export Citation
  • Carpenter, T. H., 1963: The distribution of the semidiurnal pressure oscillation on the Antarctic continent. J. Geophys. Res., 68, 22112215, doi:10.1029/JZ068i008p02211.

    • Search Google Scholar
    • Export Citation
  • Chapman, S., and R. Lindzen, 1970: Atmospheric Tides. D. Reidel, 200 pp.

  • Compo, G. P., and Coauthors, 2010: International Surface Pressure Databank (ISPDv2) 1768 to 2010. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, CO, digital media, doi:10.5065/D6SQ8XDW.

  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Covey, C., A. Dai, D. Marsh, and R. S. Lindzen, 2011: The surface-pressure signature of atmospheric tides in modern climate models. J. Atmos. Sci., 68, 495514, doi:10.1175/2010JAS3560.1.

    • Search Google Scholar
    • Export Citation
  • Covey, C., A. Dai, R. S. Lindzen, and D. R. Marsh, 2014: Atmospheric tides in the latest generation of climate models. J. Atmos. Sci., 71, 19051913, doi:10.1175/JAS-D-13-0358.1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and J. Wang, 1999: Diurnal and semidiurnal tides in global surface pressure fields. J. Atmos. Sci., 56, 38743891, doi:10.1175/1520-0469(1999)056<3874:DASTIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17, 930951, doi:10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ebita, A., and Coauthors, 2011: The Japanese 55-year Reanalysis “JRA-55”: An interim report. SOLA, 7, 149152, doi:10.2151/sola.2011-038.

    • Search Google Scholar
    • Export Citation
  • Forbes, J. M., and H. B. Garrett, 1979: Theoretical studies of atmospheric tides. Rev. Geophys., 17, 19511984, doi:10.1029/RG017i008p01951.

    • Search Google Scholar
    • Export Citation
  • Hagan, M. E., and J. M. Forbes, 2002: Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res., 107, 4754, doi:10.1029/2001JD001236.

    • Search Google Scholar
    • Export Citation
  • Hagan, M. E., and J. M. Forbes, 2003: Migrating and nonmigrating semidiurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res., 108, 1062, doi:10.1029/2002JA009466.

    • Search Google Scholar
    • Export Citation
  • Hagan, M. E., J. M. Forbes, and A. Richmond, 2003: Atmospheric tides. Encyclopedia of Atmospheric Sciences, J. Holton, J. Pyle, and J. Curry, Eds., 1st ed. Academic Press, 159–165.

  • Hamilton, K., 1980a: Observations of the solar diurnal and semidiurnal surface pressure oscillations in Canada. Atmos.–Ocean, 18, 8997, doi:10.1080/07055900.1980.9649080.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., 1980b: The geographical distribution of the solar semidiurnal surface pressure oscillation. J. Geophys. Res., 85, 19451949, doi:10.1029/JC085iC04p01945.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., S. C. Ryan, and W. Ohfuchi, 2008: Topographic effects on the solar semidiurnal surface tide simulated in a very fine resolution general circulation model. J. Geophys. Res., 113, D17114, doi:10.1029/2008JD010115.

    • Search Google Scholar
    • Export Citation
  • Haurwitz, B., 1956: The geographical distribution of the solar semidiurnal pressure oscillation. N. Y. Univ. Coll. Eng. Meteor. Pap., 2 (5), 136.

    • Search Google Scholar
    • Export Citation
  • Haurwitz, B., and A. D. Cowley, 1973: The diurnal and semidiurnal barometric oscillations, global distribution and annual variation. Pure Appl. Geophys., 102, 193222, doi:10.1007/BF00876607.

    • Search Google Scholar
    • Export Citation
  • Hsu, H. H., and B. J. Hoskins, 1989: Tidal fluctuations as seen in ECMWF data. Quart. J. Roy. Meteor. Soc., 115, 247264, doi:10.1002/qj.49711548603.

    • Search Google Scholar
    • Export Citation
  • Jin, S., O. F. Luo, and S. Gleason, 2009: Characterization of diurnal cycles in ZTD from a decade of global GPS observations. J. Geod., 83, 537545, doi:10.1007/s00190-008-0264-3.

    • Search Google Scholar
    • Export Citation
  • Kong, C.-W., 1995: Diurnal pressure variations over continental Australia. Aust. Meteor. Mag., 44, 165175.

  • Li, Y., R. B. Smith, and V. Grubišić, 2009: Using surface pressure variations to categorize diurnal valley circulations: Experiments in Owens Valley. Mon. Wea. Rev., 137, 17531769, doi:10.1175/2008MWR2495.1.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., W. J. Steenburgh, and D. M. Schultz, 1991: Diurnal surface-pressure variations over the continental United States and the influence of sea level reduction. Mon. Wea. Rev., 119, 28142830, doi:10.1175/1520-0493(1991)119<2814:DSPVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nuss, W. A., and D. W. Titley, 1994: Use of multiquadric interpolation for meteorological objective analysis. Mon. Wea. Rev., 122, 16111631, doi:10.1175/1520-0493(1994)122<1611:UOMIFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Persson, A., 2011: User guide to ECMWF forecast products. ECMWF Publ., 119 pp. [Available online at http://old.ecmwf.int/newsevents/meetings/forecast_products_user/Guide_2011-print.pdf.].

  • Petrov, L., and J.-P. Boy, 2004: Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J. Geophys. Res., 109, B03405, doi:10.1029/2003JB002500.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., 1998: Diurnal oscillations in atmospheric pressure at twenty-five small oceanic islands. Geophys. Res. Lett., 25, 38513854, doi:10.1029/1998GL900039.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., 2001: Comparisons of global analyses and station observations of the S2 barometric tide. J. Atmos. Sol.-Terr. Phys., 63, 10851097, doi:10.1016/S1364-6826(01)00018-9.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and R. M. Ponte, 2003: Barometric tides from ECMWF operational analyses. Ann. Geophys., 21, 18971910, doi:10.5194/angeo-21-1897-2003.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and S. Poulose, 2005: Terdiurnal surface-pressure oscillations over the continental United States. Mon. Wea. Rev., 133, 25262534, doi:10.1175/MWR2988.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Sato, T., T. Yoshikane, M. Satoh, H. Miura, and H. Fujinami, 2008: Resolution dependency of the diurnal cycle of convective clouds over the Tibetan plateau in a mesoscale model. J. Meteor. Soc. Japan, 86A, 1731, doi:10.2151/jmsj.86A.17.

    • Search Google Scholar
    • Export Citation
  • Schindelegger, M., 2014: Atmosphere-induced short period variations of Earth rotation. Geowissenschaftliche Mitteilungen Heft 96, Vienna University of Technology, 152 pp. [Available online at http://publik.tuwien.ac.at/files/PubDat_228266.pdf.]

  • Simpson, G. C., 1918: The twelve-hourly barometer oscillation. Quart. J. Roy. Meteor. Soc., 44, 119, doi:10.1002/qj.49704418501.

  • Stone, M., 1974: Cross-validatory choice and assessment of statistical predictions. J. Roy. Stat. Soc.,36B (2), 111147.

  • Tsuda, T., and S. Kato, 1989: Diurnal nonmigrating tides excited by a differential heating due to land-sea distribution. J. Meteor. Soc. Japan, 67, 4355.

    • Search Google Scholar
    • Export Citation
  • Ueyama, R., and C. Deser, 2008: A climatology of diurnal and semidiurnal surface wind variations over the tropical Pacific Ocean based on the tropical atmosphere ocean moored buoy array. J. Climate, 21, 593607, doi:10.1175/JCLI1666.1.

    • Search Google Scholar
    • Export Citation
  • van den Dool, H. M., S. Saha, J. Schemm, and J. Huang, 1997: A temporal interpolation method to obtain hourly atmospheric surface pressure tides in Reanalysis 1979–1995. J. Geophys. Res., 102, 22 01322 024, doi:10.1029/97JD01571.

    • Search Google Scholar
    • Export Citation
  • Watson, D., 1999: The natural neighbor series manuals and source codes. Comput. Geosci., 25, 463466, doi:10.1016/S0098-3004(98)00150-2.

    • Search Google Scholar
    • Export Citation
  • Yseboodt, M., O. de Viron, T. M. Chin, and V. Dehant, 2002: Atmospheric excitation of the Earth’s nutation: Comparison of different atmospheric models. J. Geophys. Res., 107, 2036, doi:10.1029/2000JB000042.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., J. M. Forbes, M. E. Hagan, J. M. Russell III, S. E. Palo, C. J. Mertens, and M. G. Mlynczak, 2006: Monthly tidal temperatures 20–120 km from TIMED/SABER. J. Geophys. Res., 111, A10S08, doi:10.1029/2005JA011504.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F., and K. Hamilton, 1986: Simulation of solar tides in the Canadian Climate Centre general circulation model. J. Geophys. Res., 91, 11 87711 896, doi:10.1029/JD091iD11p11877.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 820 200 29
PDF Downloads 391 106 11