• Abarca, S. F., , K. L. Corbosiero, , and T. J. Galarneau Jr., 2010: An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J. Geophys. Res., 115, D18206, doi:10.1029/2009JD013411.

    • Search Google Scholar
    • Export Citation
  • Abarca, S. F., , K. L. Corbosiero, , and D. Vollaro, 2011: The World Wide Lightning Location Network and convective activity in tropical cyclones. Mon. Wea. Rev., 139, 175191.

    • Search Google Scholar
    • Export Citation
  • Austin, M. D., , and H. E. Fuelberg, 2010: Assessment of synoptic and microphysical parameters related to lightning in tropical cyclones and storm intensification. Preprints, 29th Conf. on Hurricanes and Tropical Met., Tucson, AZ, Amer. Meteor. Soc., 16D.4. [Available online at https://ams.confex.com/ams/29Hurricanes/webprogram/Paper168972.html.]

  • Baumgardner, D., , H. Jonsson, , W. Dawson, , D. O’Connor, , and R. Newton, 2001: The cloud, aerosol and precipitation spectrometer: A new instrument for cloud investigations. Atmos. Res., 59–60, 251264.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., , R. W. Burpee, , and F. D. Marks Jr., 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J. Atmos. Sci., 53, 18871909.

    • Search Google Scholar
    • Export Citation
  • Black, R. A., , and J. Hallett, 1986: Observations of the distribution of ice in hurricanes. J. Atmos. Sci., 43, 802822.

  • Black, R. A., , and J. Hallett, 1999: Electrification of the hurricane. J. Atmos. Sci., 56, 20042028.

  • Black, R. A., , H. B. Bluestein, , and M. L. Black, 1994: Unusually strong vertical motions in a Caribbean hurricane. Mon. Wea. Rev., 122, 27222739.

    • Search Google Scholar
    • Export Citation
  • Black, R. A., , G. M. Heymsfield, , and J. Hallett, 2003: Extra large particle images at 12 km in a hurricane eyewall: Evidence of high-altitude supercooled water? Geophys. Res. Lett., 30, 2124, doi:10.1029/2003GL017864.

    • Search Google Scholar
    • Export Citation
  • Blakeslee, R. J., , D. M. Mach, , M. G. Bateman, , and J. C. Bailey, 2014: Seasonal variations in the lightning diurnal cycle and implications for the global electric circuit. Atmos. Res., 135–136, 228–243, doi:10.1016/j.atmosres.2012.09.023.

    • Search Google Scholar
    • Export Citation
  • Braun, S., and Coauthors, 2013: NASA’s Genesis and Rapid Intensification Processes (GRIP) Field Experiment. Bull. Amer. Meteor. Soc., 94, 345363.

    • Search Google Scholar
    • Export Citation
  • Brown, S., , B. Lambrigtsen, , A. Tanner, , J. Oswald, , D. Dawson, , and R. Denning, 2007: Observations of tropical cyclones with a 60, 118 and 183 GHz microwave sounder. IEEE Int. Geoscience and Remote Sensing Symp. 2007, Barcelona, Spain, IEEE, 3317 3320, doi:10.1109/IGARSS.2007.4423554.

  • Brown, S., , B. Lambrigtsen, , R. F. Denning, , T. Gaier, , P. Kangaslahti, , B. H. Lim, , J. M. Tanabe, , and A. B. Tanner, 2011: The High-Altitude MMIC Sounding Radiometer for the Global Hawk unmanned aerial vehicle: Instrument description and performance. IEEE Trans. Geosci. Remote Sens., 49, 32913301.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , and E. J. Zipser, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part II: Intercomparison of observations. Mon. Wea. Rev., 130, 785801.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , E. J. Zipser, , and S. W. Nesbitt, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130, 769784.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , K. R. Quinlan, , and D. M. Mach, 2010: Intense convection observed by NASA ER-2 in Hurricane Emily (2005). Mon. Wea. Rev., 138, 765780.

    • Search Google Scholar
    • Export Citation
  • Chan, K. R., , J. Dean-Day, , S. W. Bowen, , and T. P. Bui, 1998: Turbulence measurements by the DC-8 meteorological measurement system. Geophys. Res. Lett., 25, 13551358.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., , J. Knaff, , M. J. Brennan, , J. L. Beven II, , R. T. DeMaria, , A. B. Schumacher, , J. Kaplan, , and N. W. S. Demetriades, 2011: Tropical cyclone rapid intensity change forecasting using lightning data during the 2010 GOES-R Proving Ground at the National Hurricane Center. Preprints, Fifth Conf. on the Meteorological Applications of Lightning Data, Seattle, WA, Amer. Meteor. Soc., 3.4. [Available online at https://ams.confex.com/ams/91Annual/webprogram/Paper185181.html.]

  • Demetriades, N. W. S., , M. J. Murphy, , and J. A. Cramer, 2010a: Validation of Vaisala’s Global Lightning Dataset (GLD360) over the continental United States. Preprints, 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ, Amer. Meteor. Soc., 16D.2. [Available online at https://ams.confex.com/ams/pdfpapers/168042.pdf.]

  • Demetriades, N. W. S., , R. L. Holle, , S. Businger, , and R. D. Knabb, 2010b: Eyewall lightning outbreaks and tropical cyclone intensity change. Preprints, 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ, Amer. Meteor. Soc., 16D.3. [Available online at https://ams.confex.com/ams/pdfpapers/168543.pdf.]

  • Emersic, C., , and C. P. R. Saunders, 2010: Further laboratory investigations into the relative diffusional growth rate theory of thunderstorm electrification. Atmos. Res., 98, 327340.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., , and J. M. Reisner, 2011: High-resolution simulation of the electrification and lightning of Hurricane Rita during the period of rapid intensification. J. Atmos. Sci., 68, 477494.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., , L. M. Leslie, , E. R. Mansell, , J. M. Straka, , D. R. MacGorman, , and C. Ziegler, 2007: A high-resolution simulation of microphysics and electrification in an idealized hurricane-like vortex. Meteor. Atmos. Phys.,98, 13–33, doi:10.1007/s00703-006-0237-0.

  • Fierro, A. O., , X. Shao, , T. Hamlin, , J. M. Reisner, , and J. Harlin, 2011: Evolution of eyewall convective events as indicated by intracloud and cloud-to-ground lightning activity during the rapid intensification of Hurricanes Rita and Katrina. Mon. Wea. Rev., 139, 14921504.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 3449.

  • Guimond, S. R., , G. M. Heymsfield, , and F. J. Turk, 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633654.

    • Search Google Scholar
    • Export Citation
  • Herman, R. L., , and A. J. Heymsfield, 2003: Aircraft icing at low temperatures in Tropical Storm Chantal (2001). Geophys. Res. Lett., 30, 1955, doi:10.1029/2003GL017746.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , A. Bansemer, , S. L. Durden, , R. L. Herman, , and T. P. Bui, 2006: Ice microphysics observations in Hurricane Humberto: Comparison with non-hurricane-generated ice cloud layers. J. Atmos. Sci., 63, 288308.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , A. Bansemer, , G. M. Heymsfield, , and A. O. Fierro, 2009: Microphysics of maritime tropical convective updrafts at temperatures from −20° to −60°C. J. Atmos. Sci., 66, 35303562.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., , J. R. Carswell, , L. Li, , D. Schaubert, , and J. Creticos, 2006: Development of the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP). Eos, Trans. Amer. Geophys. Union,87 (Fall Meet. Suppl.), Abstract IN21A-1202.

  • Heymsfield, G. M., , L. Tian, , A. J. Heymsfield, , L. Li, , and S. Guimond, 2010: Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285308.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , F. D. Marks Jr., , and R. A. Black, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part II: Mesoscale distribution of ice particles. J. Atmos. Sci., 49, 943962.

    • Search Google Scholar
    • Export Citation
  • Hutchins, M. L., , R. H. Holzworth, , J. B. Brundell, , and C. J. Rodger, 2012: Relative detection efficiency of the World Wide Lightning Location Network. Radio Sci., 47, RS6005, doi:10.1029/2012RS005049.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., , and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46, 621640.

  • Jorgensen, D. P., , E. J. Zipser, , and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42, 839856.

  • LeMone, M. A., , and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity, and mass flux. J. Atmos. Sci., 37, 24442457.

    • Search Google Scholar
    • Export Citation
  • Li, L., , G. Heymsfield, , J. Carswell, , D. Schaubert, , M. McLinden, , M. Vega, , and M. Perrine, 2011: Development of the NASA High-Altitude Imaging Wind and Rain Airborne Profiler. IEEE Aerospace Conference, Big Sky, MT, Institute of Electrical and Electronics Engineers, 18, doi:10.1109/AERO.2011.5747415.

  • Lyons, W. A., , and C. S. Keen, 1994: Observations of lightning in convective supercells within tropical storms and hurricanes. Mon. Wea. Rev., 122, 18971916.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., , and W. D. Rust, 1998: The Electrical Nature of Storms. Oxford University Press, 422 pp.

  • Mach, D. M., , R. J. Blakeslee, , M. G. Bateman, , and J. C. Bailey, 2009: Electric fields, conductivity, and estimated currents from aircraft overflights of electrified clouds. J. Geophys. Res., 114, D10204, doi:10.1029/2008JD011495.

    • Search Google Scholar
    • Export Citation
  • Mach, D. M., , R. J. Blakeslee, , M. G. Bateman, , and J. C. Bailey, 2010: Comparisons of total currents based on storm location, polarity, and flash rates derived from high-altitude aircraft overflights. J. Geophys. Res., 115, D03201, doi:10.1029/2009JD012240.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., Jr., , and R. A. Houze Jr., 1987: Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci., 44, 12961317.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , P. K. Moore, , V. P. Idone, , R. W. Henderson, , and A. B. Saljoughy, 1994: Cloud-to-ground lightning in Hurricane Andrew. J. Geophys. Res., 99, 16 66516 676.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , P. Moore, , and V. Idone, 1999: Convective structure of hurricanes as revealed by lightning locations. Mon. Wea. Rev., 127, 520534.

    • Search Google Scholar
    • Export Citation
  • Naccarato, K. P., , O. Pinto Jr., , S. A. M. Garcia, , M. Murphy, , N. Demetriades, , and J. Cramer, 2010: Validation of the new GLD360 dataset in Brazil: First results. Preprints, International Lightning Detection Conference, Orlando, FL, Vaisala, 6 pp. [Available online at http://www.vaisala.com/Vaisala%20Documents/Scientific%20papers/7.Naccarato,%20Pinto,%20Garcia.pdf.]

  • Petersen, W. A., , S. A. Rutledge, , and R. E. Orville, 1996: Cloud-to-ground lightning observations from TOGA COARE: Selected results and lightning location algorithms. Mon. Wea. Rev., 124, 602620.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., , R. C. Cifelli, , S. A. Rutledge, , B. S. Ferrier, , and B. F. Smull, 1999: Shipborne dual-Doppler operations and observations during TOGA COARE. Bull. Amer. Meteor. Soc., 80, 8197.

    • Search Google Scholar
    • Export Citation
  • Poelman, D. R., , W. Schulz, , and C. Vergeiner, 2013: Performance characteristics of distinct lightning detection networks covering Belgium. J. Atmos. Oceanic Technol., 30, 942–951.

    • Search Google Scholar
    • Export Citation
  • Price, C., , M. Asfur, , and Y. Yair, 2009: Maximum hurricane intensity preceded by increase in lightning frequency. Nat. Geosci., 2, 329332.

    • Search Google Scholar
    • Export Citation
  • Rodger, C. J., , S. Werner, , J. B. Brundell, , E. H. Lay, , N. R. Thomson, , R. H. Holzworth, , and R. L. Dowden, 2006: Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): Initial case study. Ann. Geophys., 24, 31973214.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., , M. L. Black, , S. S. Chen, , and R. A. Black, 2007: An evaluation of microphysics fields from mesoscale model simulations of tropical cyclones. Part I: Comparisons with observations. J. Atmos. Sci., 64, 18111834.

    • Search Google Scholar
    • Export Citation
  • Sadowy, G. A., , A. C. Berkun, , W. Chun, , E. Im, , and S. L. Durden, 2003: Development of an advanced airborne precipitation radar. Microwave J., 46, 8498.

    • Search Google Scholar
    • Export Citation
  • Samsury, C. E., , and R. E. Orville, 1994: Cloud-to-ground lightning in tropical cyclones: A study of Hurricanes Hugo (1989) and Jerry (1989). Mon. Wea. Rev., 122, 18871896.

    • Search Google Scholar
    • Export Citation
  • Saunders, C., 2008: Charge separation mechanisms in clouds. Space Sci. Rev., 137, 335353.

  • Saunders, C., , and S. L. Peck, 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res., 103, 13 94913 956.

    • Search Google Scholar
    • Export Citation
  • Shao, X. M., and Coauthors, 2005: Katrina and Rita were lit up with lightning. Eos, Trans. Amer. Geophys. Union, 86, 398.

  • Squires, K., , and S. Businger, 2008: The morphology of eyewall lightning outbreaks in two category 5 hurricanes. Mon. Wea. Rev., 136, 17061726.

    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., , W. D. Rust, , B. F. Stull, , and T. C. Marshall, 1998: Electrical structure in thunderstorm convective regions: 1. Mesoscale convective systems. J. Geophys. Res., 103 (D12), 14 05914 078.

    • Search Google Scholar
    • Export Citation
  • Szoke, E. J., , E. J. Zipser, , and D. P. Jorgensen, 1986: A radar study of convective cells in mesoscale systems in GATE. Part I: Vertical profile statistics and comparison with hurricanes. J. Atmos. Sci., 43, 182197.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548.

  • Tanelli, S., , J. P. Meagher, , S. L. Durden, , and E. Im, 2004: Processing of high resolution, multiparametric radar data for the Airborne Dual-Frequency Precipitation Radar APR-2. Preprints, Fourth Asia-Pacific Environmental Remote Sensing Symp., Honolulu, HI, SPIE, 5654-3.

  • Williams, E. R., 2009: The global electric circuit: A review. Atmos. Res., 91, 140152, doi:10.1016/j.atmosres.2008.05.018.

  • Williams, E. R., , and S. Stanfill, 2002: The physical origin of the land-ocean contrast in lightning activity. C. R. Phys., 3, 12771292.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., , and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 17511759.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 171 171 5
PDF Downloads 23 23 6

Understanding the Relationships between Lightning, Cloud Microphysics, and Airborne Radar-Derived Storm Structure during Hurricane Karl (2010)

View More View Less
  • 1 * The Florida State University, Tallahassee, Florida
  • 2 NASA Marshall Space Flight Center, Huntsville, Alabama
  • 3 Earth System Science Center, University of Alabama in Huntsville, Huntsville, Alabama
  • 4 National Center for Atmospheric Research, Boulder, Colorado
  • 5 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • 6 ** NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

This study explores relationships between lightning, cloud microphysics, and tropical cyclone (TC) storm structure in Hurricane Karl (16 September 2010) using data collected by the NASA DC-8 and Global Hawk (GH) aircraft during NASA’s Genesis and Rapid Intensification Processes (GRIP) experiment. The research capitalizes on the unique opportunity provided by GRIP to synthesize multiple datasets from two aircraft and analyze the microphysical and kinematic properties of an electrified TC. Five coordinated flight legs through Karl by the DC-8 and GH are investigated, focusing on the inner-core region (within 50 km of the storm center) where the lightning was concentrated and the aircraft were well coordinated. GRIP datasets are used to compare properties of electrified and nonelectrified inner-core regions that are related to the noninductive charging mechanism, which is widely accepted to explain the observed electric fields within thunderstorms. Three common characteristics of Karl’s electrified regions are identified: 1) strong updrafts of 10–20 m s−1, 2) deep mixed-phase layers indicated by reflectivities >30 dBZ extending several kilometers above the freezing level, and 3) microphysical environments consisting of graupel, very small ice particles, and the inferred presence of supercooled water. These characteristics describe an environment favorable for in situ noninductive charging and, hence, TC electrification. The electrified regions in Karl’s inner core are attributable to a microphysical environment that was conducive to electrification because of occasional, strong convective updrafts in the eyewall.

Corresponding author address: Henry Fuelberg, Department of Earth, Ocean, and Atmospheric Science, The Florida State University, 1017 Academic Way, Tallahassee, FL 32306-4520. E-mail: hfuelberg@fsu.edu

Abstract

This study explores relationships between lightning, cloud microphysics, and tropical cyclone (TC) storm structure in Hurricane Karl (16 September 2010) using data collected by the NASA DC-8 and Global Hawk (GH) aircraft during NASA’s Genesis and Rapid Intensification Processes (GRIP) experiment. The research capitalizes on the unique opportunity provided by GRIP to synthesize multiple datasets from two aircraft and analyze the microphysical and kinematic properties of an electrified TC. Five coordinated flight legs through Karl by the DC-8 and GH are investigated, focusing on the inner-core region (within 50 km of the storm center) where the lightning was concentrated and the aircraft were well coordinated. GRIP datasets are used to compare properties of electrified and nonelectrified inner-core regions that are related to the noninductive charging mechanism, which is widely accepted to explain the observed electric fields within thunderstorms. Three common characteristics of Karl’s electrified regions are identified: 1) strong updrafts of 10–20 m s−1, 2) deep mixed-phase layers indicated by reflectivities >30 dBZ extending several kilometers above the freezing level, and 3) microphysical environments consisting of graupel, very small ice particles, and the inferred presence of supercooled water. These characteristics describe an environment favorable for in situ noninductive charging and, hence, TC electrification. The electrified regions in Karl’s inner core are attributable to a microphysical environment that was conducive to electrification because of occasional, strong convective updrafts in the eyewall.

Corresponding author address: Henry Fuelberg, Department of Earth, Ocean, and Atmospheric Science, The Florida State University, 1017 Academic Way, Tallahassee, FL 32306-4520. E-mail: hfuelberg@fsu.edu
Save