Conservation of Mass and Preservation of Positivity with Ensemble-Type Kalman Filter Algorithms

Tijana Janjić Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Tijana Janjić in
Current site
Google Scholar
PubMed
Close
,
Dennis McLaughlin Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Dennis McLaughlin in
Current site
Google Scholar
PubMed
Close
,
Stephen E. Cohn NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Stephen E. Cohn in
Current site
Google Scholar
PubMed
Close
, and
Martin Verlaan Delft Technical University, Delft, Netherlands

Search for other papers by Martin Verlaan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper considers the incorporation of constraints to enforce physically based conservation laws in the ensemble Kalman filter. In particular, constraints are used to ensure that the ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. In certain situations filtering algorithms such as the ensemble Kalman filter (EnKF) and ensemble transform Kalman filter (ETKF) yield updated ensembles that conserve mass but are negative, even though the actual states must be nonnegative. In such situations if negative values are set to zero, or a log transform is introduced, the total mass will not be conserved. In this study, mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate nonnegativity constraints. Simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. In two examples, an update that includes a nonnegativity constraint is able to properly describe the transport of a sharp feature (e.g., a triangle or cone). A number of implementation questions still need to be addressed, particularly the need to develop a computationally efficient quadratic programming update for large ensemble.

Corresponding author address: Tijana Janjić, Hans Ertel Centre for Weather Research, DWD/LMU, Theresienstr. 37, 80333 Munich, Germany. E-mail: tijana.janjic-pfander@dwd.de

Abstract

This paper considers the incorporation of constraints to enforce physically based conservation laws in the ensemble Kalman filter. In particular, constraints are used to ensure that the ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. In certain situations filtering algorithms such as the ensemble Kalman filter (EnKF) and ensemble transform Kalman filter (ETKF) yield updated ensembles that conserve mass but are negative, even though the actual states must be nonnegative. In such situations if negative values are set to zero, or a log transform is introduced, the total mass will not be conserved. In this study, mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate nonnegativity constraints. Simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. In two examples, an update that includes a nonnegativity constraint is able to properly describe the transport of a sharp feature (e.g., a triangle or cone). A number of implementation questions still need to be addressed, particularly the need to develop a computationally efficient quadratic programming update for large ensemble.

Corresponding author address: Tijana Janjić, Hans Ertel Centre for Weather Research, DWD/LMU, Theresienstr. 37, 80333 Munich, Germany. E-mail: tijana.janjic-pfander@dwd.de
Save
  • Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 27412758.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 1972: Design of the UCLA general circulation model. Tech. Rep., Department of Meteorology, University of California, Los Angeles, Tech. Rep. 7, 116 pp.

  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys., 17, 173265.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436.

    • Search Google Scholar
    • Export Citation
  • Bocquet, M., C. A. Pires, and L. Wu, 2010: Beyond Gaussian statistical modeling in geophysical data assimilation. Mon. Wea. Rev., 138, 29973023.

    • Search Google Scholar
    • Export Citation
  • Bonavita, M., L. Isaksen, and E. Holm, 2012: On the use of EDA background error variances in the ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 138 (667), 15401559, doi:10.1002/qj.1899.

    • Search Google Scholar
    • Export Citation
  • Brankart, J.-M., C.-E. Testut, P. Brasseur, and J. Verron, 2003: Implementation of a multivariate data assimilation scheme for isopycnic coordinate ocean models: Application to a 1993–1996 hindcast of the North Atlantic Ocean circulation. J. Geophys. Res., 108, 3074, doi:10.1029/2001JC001198.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., 2005: Ensemble-derived stationary and flow dependent background error covariances: Evaluation in a quasi-operational NWP setting. Quart. J. Roy. Meteor. Soc., 131, 10131043.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 17191724.

  • Chen, Y., and C. Snyder, 2007: Assimilating vortex position with an ensemble Kalman filter. Mon. Wea. Rev., 135, 18281845.

  • Cohn, S. E., 1997: An introduction to estimation theory. J. Meteor. Soc. Japan, 75, 257288.

  • Cohn, S. E., 2009: Energetic consistency and coupling of the mean and covariance dynamics. Handbook of Numerical Analysis, R. M. Temam and J. J. Tribbia, Eds., Vol. XIV, Computational Methods for the Atmosphere and the Oceans, Elsevier, 443–478.

  • Cohn, S. E., 2010: The principle of energetic consistency in data assimilation. Data Assimilation—Making Sense of Observations, W. Lahoz, R. Swinbank, and B. Khattatov, Eds., Springer-Verlag, 145–223.

  • Emerick, A. A., and A. Reynolds, 2013: Ensemble smoother with multiple data assimilation. Comput. Geosci.,55, 3–15.

  • Evensen, G., 2009: Data Assimilation: The Ensemble Kalman Filter.Springer, 308 pp.

  • Gilleland, E., D. A. Ahijevych, B. G. Brown, and E. E. Ebert, 2010: Verifying forecasts spatially. Bull. Amer. Meteor. Soc., 91, 13651373.

    • Search Google Scholar
    • Export Citation
  • Gu, Y., and D. S. Oliver, 2007: An iterative ensemble Kalman filter for multiphase fluid flow data assimilation. SPE J., 12, 438446.

  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Wea. Rev., 128, 29052919.

  • Hoffman, R. N., L. Zheng, J.-F. Louis, and C. Grassoti, 1995: Distortion representation of forecast errors. Mon. Wea. Rev., 123, 27582770.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811.

    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126.

    • Search Google Scholar
    • Export Citation
  • Isaksen, L., M. Bonavita, R. Buizza, M. Fisher, J. Haseler, M. Leutbecher, and L. Raynaud, 2010: Ensemble of data assimilations at ECMWF. Tech. Rep., ECMWF Tech. Memo. 636, 48 pp.

  • Jacobs, G. A., and H. E. Ngodock, 2003: The maintenance of conservative physical laws within data assimilation systems. Mon. Wea. Rev., 131, 25952607.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z., 1984: Non-linear advection schemes and energy cascade on semi-staggered grids. Mon. Wea. Rev., 112, 12341245.

  • Janjić, Z., and R. Gall, 2012: Scientific documentation of the NCEP nonhydrostatic multiscale model on the B grid (NMMB). Part 1: Dynamics. Tech. Rep. NCAR/TN-489+STR, NCAR Tech. Note, 80 pp.

  • Janjić, Z., T. Janjić, and R. Vasić, 2011: A class of conservative fourth-order advection schemes and impact of enhanced formal accuracy on extended-range forecasts. Mon. Wea. Rev., 139, 15561568.

    • Search Google Scholar
    • Export Citation
  • Lauvernet, C., J.-M. Brankart, F. Castruccio, G. Broquet, P. Brasseur, and J. Verron, 2009: A truncated Gaussian filter for data assimilation with inequality constraints: Application to the hydrostatic stability condition in ocean models. Ocean Modell., 27, 117.

    • Search Google Scholar
    • Export Citation
  • Lawson, W. G., and J. A. Hansen, 2005: Alignment error models and ensemble-based data assimilation. Mon. Wea. Rev., 133, 16871709.

  • Lin, S.-J., and R. B. Rood, 1996: Multidimensional flux-form semi-Lagrangian transport schemes. Mon. Wea. Rev., 124, 20462070.

  • Lin, S.-J., and R. B. Rood, 1997: An explicit flux-form semi-Lagrangian shallow-water model on the sphere. Quart. J. Roy. Meteor. Soc., 123, 24772498.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and M. Xue, 2006: Retrieval of moisture from slant-path water vapor observations of a hypothetical GPS network using a three-dimensional variational scheme with anisotropic background error. Mon. Wea. Rev., 134, 933949.

    • Search Google Scholar
    • Export Citation
  • Liu, H., M. Xue, R. J. Purser, and D. F. Parrish, 2007: Retrieval of moisture from simulated GPS slant-path water vapor observations using 3DVAR with anisotropic recursive filters. Mon. Wea. Rev., 135, 15061521.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 31833203.

    • Search Google Scholar
    • Export Citation
  • Pan, M., and E. F. Wood, 2006: Data assimilation for estimating the terrestrial water budget using a constrained ensemble Kalman filter. J. Hydrometeor., 7, 534547.

    • Search Google Scholar
    • Export Citation
  • Riishøjgaard, L.-P., 1998: A direct way of specifying flow dependent background error correlations for meteorological analysis systems. Tellus, 50A, 4257.

    • Search Google Scholar
    • Export Citation
  • Sadourny, R., 1975: The dynamics of finite-difference models of the shallow-water equations. J. Atmos. Sci.,32, 680–689.

  • Schneider, H. R., 1984: A numerical transport scheme which avoids negative mixing ratios. Mon. Wea. Rev., 112, 12061217.

  • Simon, D., 2010: Kalman filtering with state constraints: A survey of linear and nonlinear algorithms. IET Control Theory Appl. IET, 4, 13031318, doi:10.1049/iet-cta.2009.0032.

    • Search Google Scholar
    • Export Citation
  • Simon, D., and D. L. Simon, 2005: Aircraft turbofan engine health estimation using constrained Kalman filtering. J. Eng. Gas Turbines Power, 127, 323328.

    • Search Google Scholar
    • Export Citation
  • Simon, E., and L. Bertino, 2009: Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: A twin experiment. Ocean Sci., 5, 495–510, doi:10.5194/os-5-495-2009.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and L. G. Margolin, 1998: MPDATA: A finite-difference solver for geophysical flows. J. Comput. Phys., 140, 459480.

    • Search Google Scholar
    • Export Citation
  • Tremback, C. J., J. Powell, W. R. Cotton, and R. A. Pielke, 1987: The forward-in-time upstream advection scheme: Extension to higher orders. Mon. Wea. Rev., 115, 540555.

    • Search Google Scholar
    • Export Citation
  • Wang, X., 2010: Incorporating ensemble covariance in the Gridpoint Statistical Interpolation (GSI) variational minimization: A mathematical framework. Mon. Wea. Rev., 138, 29902995.

    • Search Google Scholar
    • Export Citation
  • Wang, X., 2011: Application of the WRF hybrid ETKF-3DVAR data assimilation system for hurricane track forecasts. Wea. Forecasting, 26, 868884.

    • Search Google Scholar
    • Export Citation
  • Wang, X., C. H. Bishop, and S. J. Julier, 2004: Which is better, an ensemble of positive-negative pairs or a centered spherical simplex ensemble? Mon. Wea. Rev., 132, 15901605.

    • Search Google Scholar
    • Export Citation
  • Wang, X., T. M. Hamill, J. S. Whitaker, and C. H. Bishop, 2007a: A comparison of hybrid ensemble transform Kalman filter–optimum interpolation and ensemble square root filter analysis schemes. Mon. Wea. Rev., 135, 10551076.

    • Search Google Scholar
    • Export Citation
  • Wang, X., C. Snyder, and T. M. Hamill, 2007b: On the theoretical equivalence of differently proposed ensemble–3DVAR hybrid analysis schemes. Mon. Wea. Rev., 135, 222227.

    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Barker, C. Snyder, and T. M. Hamill, 2008: A hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part I: Observing system simulation experiment. Mon. Wea. Rev., 136, 51165131.

    • Search Google Scholar
    • Export Citation
  • Zupanski, M., 2005: Maximum likelihood ensemble filter: Theoretical aspects. Mon. Wea. Rev., 133, 17101726.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 765 257 21
PDF Downloads 600 208 20