The Impact of Ice Phase Cloud Parameterizations on Tropical Cyclone Prediction

Yi Jin Naval Research Laboratory, Monterey, California

Search for other papers by Yi Jin in
Current site
Google Scholar
PubMed
Close
,
Shouping Wang Naval Research Laboratory, Monterey, California

Search for other papers by Shouping Wang in
Current site
Google Scholar
PubMed
Close
,
Jason Nachamkin Naval Research Laboratory, Monterey, California

Search for other papers by Jason Nachamkin in
Current site
Google Scholar
PubMed
Close
,
James D. Doyle Naval Research Laboratory, Monterey, California

Search for other papers by James D. Doyle in
Current site
Google Scholar
PubMed
Close
,
Gregory Thompson NCAR, Boulder, Colorado

Search for other papers by Gregory Thompson in
Current site
Google Scholar
PubMed
Close
,
Lewis Grasso CIRA, Fort Collins, Colorado

Search for other papers by Lewis Grasso in
Current site
Google Scholar
PubMed
Close
,
Teddy Holt Naval Research Laboratory, Monterey, California

Search for other papers by Teddy Holt in
Current site
Google Scholar
PubMed
Close
,
Jon Moskaitis Naval Research Laboratory, Monterey, California

Search for other papers by Jon Moskaitis in
Current site
Google Scholar
PubMed
Close
,
Hao Jin Naval Research Laboratory, Monterey, California

Search for other papers by Hao Jin in
Current site
Google Scholar
PubMed
Close
,
Richard M. Hodur Naval Research Laboratory, Monterey, California

Search for other papers by Richard M. Hodur in
Current site
Google Scholar
PubMed
Close
,
Qingyun Zhao Naval Research Laboratory, Monterey, California

Search for other papers by Qingyun Zhao in
Current site
Google Scholar
PubMed
Close
,
Ming Liu Naval Research Laboratory, Monterey, California

Search for other papers by Ming Liu in
Current site
Google Scholar
PubMed
Close
, and
Mark DeMaria NOAA/NESDIS, Fort Collins, Colorado

Search for other papers by Mark DeMaria in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of ice phase cloud microphysical processes on prediction of tropical cyclone environment is examined for two microphysical parameterizations using the Coupled Ocean–Atmosphere Mesoscale Prediction System–Tropical Cyclone (COAMPS-TC) model. An older version of microphysical parameterization is a relatively typical single-moment scheme with five hydrometeor species: cloud water and ice, rain, snow, and graupel. An alternative newer method uses a hybrid approach of double moment in cloud ice and rain and single moment in the other three species. Basin-scale synoptic flow simulations point to important differences between these two schemes. The upper-level cloud ice concentrations produced by the older scheme are up to two orders of magnitude greater than the newer scheme, primarily due to differing assumptions concerning the ice nucleation parameterization. Significant (1°–2°C) warm biases near the 300-hPa level in the control experiments are not present using the newer scheme. The warm bias in the control simulations is associated with the longwave radiative heating near the base of the cloud ice layer. The two schemes produced different track and intensity forecasts for 15 Atlantic storms. Rightward cross-track bias and positive intensity bias in the control forecasts are significantly reduced using the newer scheme. Synthetic satellite imagery of Hurricane Igor (2010) shows more realistic brightness temperatures from the simulations using the newer scheme, in which the inner core structure is clearly discernible. Applying the synthetic satellite imagery in both quantitative and qualitative analyses helped to pinpoint the issue of excessive upper-level cloud ice in the older scheme.

Corresponding author address: Yi Jin, Naval Research Laboratory, 7 Grace Hopper Avenue, Monterey, CA 93943-5502. E-mail: yi.jin@nrlmry.navy.mil

Abstract

The impact of ice phase cloud microphysical processes on prediction of tropical cyclone environment is examined for two microphysical parameterizations using the Coupled Ocean–Atmosphere Mesoscale Prediction System–Tropical Cyclone (COAMPS-TC) model. An older version of microphysical parameterization is a relatively typical single-moment scheme with five hydrometeor species: cloud water and ice, rain, snow, and graupel. An alternative newer method uses a hybrid approach of double moment in cloud ice and rain and single moment in the other three species. Basin-scale synoptic flow simulations point to important differences between these two schemes. The upper-level cloud ice concentrations produced by the older scheme are up to two orders of magnitude greater than the newer scheme, primarily due to differing assumptions concerning the ice nucleation parameterization. Significant (1°–2°C) warm biases near the 300-hPa level in the control experiments are not present using the newer scheme. The warm bias in the control simulations is associated with the longwave radiative heating near the base of the cloud ice layer. The two schemes produced different track and intensity forecasts for 15 Atlantic storms. Rightward cross-track bias and positive intensity bias in the control forecasts are significantly reduced using the newer scheme. Synthetic satellite imagery of Hurricane Igor (2010) shows more realistic brightness temperatures from the simulations using the newer scheme, in which the inner core structure is clearly discernible. Applying the synthetic satellite imagery in both quantitative and qualitative analyses helped to pinpoint the issue of excessive upper-level cloud ice in the older scheme.

Corresponding author address: Yi Jin, Naval Research Laboratory, 7 Grace Hopper Avenue, Monterey, CA 93943-5502. E-mail: yi.jin@nrlmry.navy.mil
Save
  • Bikos, D., and Coauthors, 2012: Synthetic satellite imagery for real-time high-resolution model evaluation. Wea. Forecasting, 27, 784795.

    • Search Google Scholar
    • Export Citation
  • Black, R. A., and J. Hallett, 1986: Observations of the distribution of ice in hurricanes. J. Atmos. Sci., 43, 802822.

  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer Experiment. Bull. Amer. Meteor. Soc., 88, 357374.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130, 15731592.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C.-L., and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationship. Mon. Wea. Rev., 110, 13541374.

  • Chan, J. C.-L., J. Shi, and K. S. Liu, 2001: Improvements in the seasonal forecasting of tropical cyclone activity over the western North Pacific. Wea. Forecasting, 16, 491498.

    • Search Google Scholar
    • Export Citation
  • Chen, H., D.-L. Zhang, J. Carton, and R. Atlas, 2011: On the rapid intensification of Hurricane Wilma (2005). Part I: Model prediction and structural changes. Wea. Forecasting, 26, 885901.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., M. S. Peng, C. A. Reynolds, and C.-C. Wu, 2009: Interpretation of tropical cyclone forecast sensitivity from the singular vector perspective. J. Atmos. Sci., 66, 33833400.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 5574.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., K. J. Westrick, and C. F. Mass, 1999: Evaluation of MM5 and Eta-10 precipitation forecasts over the Pacific Northwest during the cool season. Wea. Forecasting, 14, 137154.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation EnhancementA Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 29–32.

  • Cotton, W. R., and R. A. Anthes, 1989: Storm and Cloud Dynamics. Academic Press, 883 pp.

  • Daley, R., and E. Barker, 2001: NAVDAS: Formulation and diagnostics. Mon. Wea. Rev., 129, 869883.

  • DeMott, P. J., and Coauthors, 2011: Resurgence in ice nuclei measurement research. Bull. Amer. Meteor. Soc., 92, 16231635.

  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, and H. C. Graber, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2012: Real-time tropical cyclone prediction using COAMPS-TC. Advances in Geosciences, Vol. 28, K. Satake, Ed., World Scientific, 1528.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665669.

  • Fairall, C., F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280.

  • Fierro, A. O., R. F. Rogers, F. D. Marks, and D. S. Nolan, 2009: The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW model. Mon. Wea. Rev., 137, 37173743.

    • Search Google Scholar
    • Export Citation
  • Fletcher, N. H., 1962: The Physics of Rain Clouds. Cambridge University Press, 390 pp.

  • Fovell, R. G., K. L. Corbosiero, and H.-C. Kuo, 2009: Cloud microphysics impact on hurricane track as revealed in idealized experiments. J. Atmos. Sci., 66, 17641778.

    • Search Google Scholar
    • Export Citation
  • Grasso, L. D., M. Sengupta, J. F. Dostalek, R. Brummer, and M. DeMaria, 2008: Synthetic satellite imagery for current and future environmental satellites. Int. J. Remote Sens., 29, 43734384.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and D. J. Shea, 1973: The hurricane’s inner core region. II. Thermal stability and dynamic characteristics. J. Atmos. Sci., 30, 15651576.

    • Search Google Scholar
    • Export Citation
  • Harshvardhan, R.Davies, D. Randall, and T. Corsetti, 1987: A fast radiation parameterization for atmospheric circulation models. J. Geophys. Res., 92, 10091016.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, S. L. Durden, R. L. Herman, and T. P. Bui, 2006: Ice microphysics observations in Hurricane Humberto: Comparison with non-hurricane-generated ice cloud layers. J. Atmos. Sci., 63, 288308.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G., J. Halverson, J. Simpson, L. Tian, and T. P. Bui, 2001: ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor., 40, 13101330.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., F. D. Marks, and R. A. Black, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part II: Mesoscale distribution of ice particles. J. Atmos. Sci., 49, 943963.

    • Search Google Scholar
    • Export Citation
  • Jin, Y., W. T. Thompson, S. Wang, and C.-S. Liou, 2007: A numerical study of the effect of dissipative heating on tropical cyclone intensity. Wea. Forecasting, 22, 950966.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41, 12871311.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1961: A numerical experiment on the development of tropical cyclone. J. Meteor., 18, 259282.

  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., and R. M. Zehr, 2007: Reexamination of tropical cyclone wind–pressure relationships. Wea. Forecasting, 22, 7188.

  • Li, X., and Z. Pu, 2008: Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon. Wea. Rev., 136, 48194838.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Liou, C.-S., and K. D. Sashegyi, 2012: On the initialization of tropical cyclones with a three dimensional variational analysis. Nat. Hazards, 63, 13751391.

    • Search Google Scholar
    • Export Citation
  • Liu, C., K. Ikeda, G. Thompson, R. Rasmussen, and J. Dudhia, 2011: High-resolution simulations of wintertime precipitation in the Colorado Headwaters region: Sensitivity to physics parameterizations. Mon. Wea. Rev., 139, 35333553.

    • Search Google Scholar
    • Export Citation
  • Liu, M., J. E. Nachamkin, and D. L. Westphal, 2009: On the improvement of COAMPS weather forecasts using an advanced radiative transfer model. Wea. Forecasting, 24, 286306.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., D.-L. Zhang, and M. K. Yau, 1997: A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125, 30733093.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41, 28362848.

    • Search Google Scholar
    • Export Citation
  • Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202.

  • Malkus, J. S., 1958: On the structure and maintenance of the mature hurricane eye. J. Meteor., 15, 337349.

  • Malkus, J. S., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12, 120.

  • McFarquhar, G. M., and R. A. Black, 2004: Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes. J. Atmos. Sci., 61, 422439.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., H. Zhang, G. Heymsfield, R. Hood, J. Dudhia, J. B. Halverson, and F. Marks, 2006: Factors affecting the evolution of Hurricane Erin (2001) and the distributions of hydrometeors: Role of microphysical processes. J. Atmos. Sci., 63, 127150.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708721.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064.

    • Search Google Scholar
    • Export Citation
  • Molthan, A. L., and B. A. Colle, 2012: Comparisons of single- and double-moment microphysics schemes in the simulation of a synoptic-scale snowfall event. Mon. Wea. Rev., 140, 29823002.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. O. Pinto, 2005: Mesoscale modeling of springtime Arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme. J. Atmos. Sci., 62, 36833704.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1984: The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Quart. J. Roy. Meteor. Soc., 110, 783820.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1978: Microphysics of Clouds and Precipitation. D. Reidel, 714 pp.

  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., and J. S. Malkus, 1961: Some aspects of Hurricane Daisy, 1958. Tellus, 13, 181213.

  • Rogers, R., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 4470.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., M. L. Black, S. S. Chen, and R. A. Black, 2007: An evaluation of microphysics fields from mesoscale model simulations of tropical cyclones. Part I: Comparisons with observations. J. Atmos. Sci., 64, 18111834.

    • Search Google Scholar
    • Export Citation
  • Rosenthal, S. L., 1978: Numerical simulation of tropical cyclone development with latent heat release by the resolvable scales I: Model description and preliminary results. J. Atmos. Sci., 35, 258271.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206.

    • Search Google Scholar
    • Export Citation
  • Schultz, P., 1995: An explicit cloud physics parameterization for operational numerical weather prediction. Mon. Wea. Rev., 123, 33313343.

    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., W.-K. Tao, W. K. Lau, and R. Atlas, 2010: Predicting tropical cyclogenesis with a global mesoscale model: Hierarchical multiscale interactions during the formation of Tropical Cyclone Nargis (2008). J. Geophys. Res., 115, D14102, doi:10.1029/2009JD013140.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., J. Halverson, B. S. Ferrier, W. A. Petersen, R. H. Simpson, R. Blakeslee, and S. L. Durden, 1998: On the role of “hot towers” in tropical cyclone formation. Meteor. Atmos. Phys., 67, 1535.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Q. Wang, and J. Doyle, 2002: Some improvement of Louis surface flux parameterization. Preprints, 15th Symp. on Boundary Layers and Turbulence, Wageningen, Netherlands, Amer. Meteor. Soc., 547550.

  • Wang, Y., 2002: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part II: Model refinements and sensitivity to cloud microphysics parameterization. Mon. Wea. Rev., 130, 30223036.

    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 677 pp.

  • Willoughby, H. E., 1998: Tropical cyclone eye thermodynamics. Mon. Wea. Rev., 126, 30533067.

  • Willoughby, H. E., 2009: Diabatically induced secondary flows in tropical cyclones. Part II: Periodic forcing. Mon. Wea. Rev., 137, 822835.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., H.-L. Jin, S. J. Lord, and J. M. Piotrowicz, 1984: Hurricane structure and evolution as simulated by axisymmetric, nonhydrostatic numerical model. J. Atmos. Sci., 41, 11691186.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., J.-H. Chen, P.-H. Lin, and K.-H. Chou, 2007: Targeted observations of tropical cyclone movement based on the adjoint-derived sensitivity steering vector. J. Atmos. Sci., 64, 26112626.

    • Search Google Scholar
    • Export Citation
  • Zhu, T., and D.-L. Zhang, 2006: Numerical simulation of Hurricane Bonnie (1998). Part II: Sensitivity to varying cloud microphysical processes. J. Atmos. Sci., 63, 109126.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 2003: Some views on “hot towers” after 50 years of tropical field programs and two years of TRMM data. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM)—A Tribute to Dr. Joanne Simpson, Meteor. Monogr., No. 51, Amer. Meteor. Soc., 49–58.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 401 124 7
PDF Downloads 242 66 4