• Anthes, R. A., , C. Rocken, , and Y. Kuo, 2000: Applications of COSMIC to meteorology and climate. Terr. Atmos. Oceanic Sci., 11, 115156.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 89, 313333.

  • Barker, D. M., , W. Huang, , Y.-R. Guo, , A. J. Bourgeois, , and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., and Coauthors, 2012: The Weather Research and Forecasting Model’s Community Variational/Ensemble Data Assimilation System: WRFDA. Bull. Amer. Meteor. Soc., 93, 831843.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., 1989: An extraordinary katabatic wind regime at Terra Nova Bay, Antarctica. Mon. Wea. Rev., 117, 688695.

  • Bromwich, D. H., , K. M. Hines, , and L.-S. Bai, 2009: Development and testing of Polar Weather Research and Forecasting model: 2. Arctic Ocean. J. Geophys. Res., 114, D08122, doi:10.1029/2008JD010300.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , Y.-H. Kuo, , M. Serreze, , J. Walsh, , L.-S. Bai, , M. Barlage, , K. Hines, , and A. Slater, 2010: Arctic System Reanalysis: Call for community involvement. Eos, Trans. Amer. Geophys. Union, 91 (2), 1314, doi:10.1029/2010EO020001.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , F. O. Otieno, , K. M. Hines, , K. W. Manning, , and E. Shilo, 2013: Comprehensive evaluation of Polar Weather Research and Forecasting model performance in the Antarctic. J. Geophys. Res. Atmos., 118, 274292, doi:10.1029/2012JD018139.

    • Search Google Scholar
    • Export Citation
  • Cassano, J. J., , M. E. Higgins, , and M. W. Seefeldt, 2011: Performance of the Weather Research and Forecasting (WRF) model for month-long pan-Arctic simulations. Mon. Wea. Rev., 139, 34693488.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., cited 2012: Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. National Snow and Ice Data Center. [Available online at http://nsidc.org/data/nsidc-0079.html.]

  • Comiso, J. C., , C. L. Parkinson, , R. Gersten, , and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Crosby, D. S., , L. C. Breaker, , and W. H. Gemmill, 1993: A proposed definition for vector correlation in geophysics: Theory and application. J. Atmos. Oceanic Technol., 10, 355367.

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., , and J. C. Derber, 2008: Operational implementation of COSMIC observations into NCEP’s Global Data Assimilation System. Wea. Forecasting, 23, 702711.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Dickey, W. W., 1961: A study of a topographic effect on wind in the Arctic. J. Atmos. Sci., 18, 790803.

  • Doney, S. C., and Coauthors, 2012: Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci.,4, 1137, doi:10.1146/annurev-marine-041911-111611.

  • Fan, X., , and J. S. Tilley, 2005: Dynamic assimilation of MODIS-retrieved humidity profiles within a regional model for high-latitude forecast applications. Mon. Wea. Rev., 133, 34503480.

    • Search Google Scholar
    • Export Citation
  • Fan, X., , J. R. Krieger, , J. Zhang, , and X. Zhang, 2013: Assimilating QuikSCAT ocean surface winds with the Weather Research and Forecasting model for surface wind-field simulation over the Chukchi/Beaufort Seas. Bound.-Layer Meteor., 148, 220226.

    • Search Google Scholar
    • Export Citation
  • Ford, J. D., , and T. Pearce, 2010: What we know, do not know, and need to know about climate change vulnerability in the western Canadian Arctic: A systematic literature review. Environ. Res. Lett., 5, 014008, doi:10.1088/1748-9326/5/1/014008.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., , D. H. Bromwich, , L.-S. Bai, , M. Barlage, , and A. G. Slater, 2011: Development and testing of Polar WRF. Part III: Arctic land. J. Climate, 24, 2648.

    • Search Google Scholar
    • Export Citation
  • Huang, C.-Y., , Y.-H. Kuo, , S.-H. Chen, , and F. Vandenberghe, 2005: Improvements in typhoon forecasts with assimilated GPS occultation refractivity. Wea. Forecasting, 20, 931953.

    • Search Google Scholar
    • Export Citation
  • Huang, X., and Coauthors, 2009: Four-dimensional variational data assimilation for WRF: Formulation and preliminary results. Mon. Wea. Rev., 137, 299314.

    • Search Google Scholar
    • Export Citation
  • Iacono, M., , J. Delamere, , E. Mlawer, , M. Shephard, , S. Clough, , and W. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer and turbulence closure schemes. Mon. Wea. Rev., 122, 927945.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1996: The Mellor–Yamada level 2.5 scheme in the NCEP Eta Model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 333334.

  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso Model. NCEP Office Note 437, National Centers for Environmental Prediction, 61 pp.

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Key, J. R., , D. Santek, , C. S. Velden, , N. Bormann, , J.-N. Thépaut, , L. P. Riishojgaard, , Y. Zhu, , and W. P. Menzel, 2003: Cloud-drift and water vapor winds in the polar regions from MODIS. IEEE Trans. Geosci. Remote Sens., 41, 482492.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens.,41, 442458.

    • Search Google Scholar
    • Export Citation
  • Kozo, T., 1979: Evidence for sea breezes on the Alaskan Beaufort Sea coast. Geophys. Res. Lett., 6, 849852.

  • Kozo, T., 1980: Mountain barrier baroclinity effects on surface winds along the Alaskan coast. Geophys. Res. Lett., 7, 377380.

  • Liu, H., , P. Q. Olsson, , and K. Volz, 2008: SAR observation and modeling of gap winds in the Prince William Sound of Alaska. Sensors (Basel Switzerland), 8, 48944914.

    • Search Google Scholar
    • Export Citation
  • Liu, Z.-Q., , and F. Rabier, 2002: The interaction between model resolution, observation resolution and observation density in data assimilation: A one-dimensional study. Quart. J. Roy. Meteor. Soc., 128, 13671386.

    • Search Google Scholar
    • Export Citation
  • Liu, Z.-Q., , H.-C. Lin, , Y.-H. Kuo, , D. Bromwich, , and L. Bai, 2011: Data assimilation over northern polar region using WRF and WRFDA. Extended Abstracts, 12th WRF Users’ Workshop, Boulder, CO, NCAR, 7B.7.

    • Search Google Scholar
    • Export Citation
  • Long, D. G., , and J. M. Mendel, 1990: Model-based estimation of wind fields over the ocean from wind scatterometer measurements. I. Development of the wind field model. IEEE Trans. Geosci. Remote Sens., 28, 349360.

    • Search Google Scholar
    • Export Citation
  • Lynch, A. H., , A. G. Slater, , and M. Serreze, 2001: The Alaskan Arctic frontal zone: Forcing by orography, coastal contrast, and the boreal forest. J. Climate, 14, 43514362.

    • Search Google Scholar
    • Export Citation
  • Lynch, A. H., , J. A. Curry, , R. D. Brunner, , and J. A. Maslanik, 2004: Toward an integrated assessment of the impacts of extreme winds events on Barrow, Alaska. Bull. Amer. Meteor. Soc., 85, 209221.

    • Search Google Scholar
    • Export Citation
  • Mölders, N., 2008: Suitability of the Weather Research and Forecasting (WRF) model to predict the June 2005 fire weather for interior Alaska. Wea. Forecasting, 23, 953973.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., 2012: Decadal variability and a recent amplification of the summer Beaufort Sea high. Geophys. Res. Lett., 39, L10807, doi:10.1029/2012GL051570.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., , and R. S. Pickart, 2012: Northern Bering Sea tip jets. Geophys. Res. Lett., 39, L08807, doi:10.1029/2012GL051537.

  • Morrison, H. C., , G. Thompson, , and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007.

    • Search Google Scholar
    • Export Citation
  • Olsson, P. Q., , and J. Y. Harrington, 2000: Dynamics and energetics of the cloudy boundary layer in simulations of off-ice flow in the marginal ice zone. J. Geophys. Res., 105, 11 889–11 899.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., 2009: Meteorology of the Beaufort Sea. J. Geophys. Res., 114, C00A07, doi:10.1029/2008JC004861.

  • Parish, T. R., , and J. J. Cassano, 2003: The role of katabatic winds on the Antarctic surface wind regime. Mon. Wea. Rev., 131, 317333.

    • Search Google Scholar
    • Export Citation
  • Parrish, D., , and J. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 17471763.

    • Search Google Scholar
    • Export Citation
  • Picou, J. S., , C. Formichella, , B. K. Marshall, , and C. Arata, 2009: Community impacts of the Exxon Valdez oil spill: A synthesis and elaboration of social science research. Synthesis: Three Decades of Research on Socioeconmic Effects Related to Offshore Petroleum Development in Coastal Alaska, S. R. Braund and J. Kruse, Eds., Alaska: Steven R. Braund and Associates, 279–310.

  • Porter, D. F., , J. J. Cassano, , and M. C. Serreze, 2011: Analysis of the Arctic atmospheric energy budget in WRF: A comparison with reanalyses and satellite observations. J. Geophys. Res., 116, D22108, doi:10.1029/2011JD016622.

    • Search Google Scholar
    • Export Citation
  • Powers, J. G., 2007: Numerical prediction of an Antarctic severe wind event with the Weather Research and Forecasting (WRF) model. Mon. Wea. Rev.,135, 3134–3157.

  • Pu, Z., , W.-K. Tao, , S. Braun, , J. Simpson, , Y. Jia, , J. Halverson, , W. Olson, , and A. Hou, 2002: The impact of TRMM data on mesoscale numerical simulation of Supertyphoon Paka. Mon. Wea. Rev., 130, 24482458.

    • Search Google Scholar
    • Export Citation
  • Reed, M., , Ø. Johansena, , P. J. Brandvika, , P. Dalinga, , A. Lewisb, , R. Fioccob, , D. Mackayc, , and R. Prentkid, 1999: Oil spill modeling towards the close of the 20th century: Overview of the state of the art. Spill Sci. Technol. Bull., 5, 316.

    • Search Google Scholar
    • Export Citation
  • Schwerdtfeger, W., 1974: Mountain barrier effect on the flow of stable air north of the Brooks Range. Proc. 24th Alaskan Science Conf., Fairbanks, AK, Geophysical Institute, University of Alaska Fairbanks, 204–208.

  • Shulski, M., , and G. Wendler, 2007: Climate of Alaska. University of Alaska Press, 216 pp.

  • Shulski, M., , J. You, , J. R. Krieger, , W. Baule, , J. Zhang, , X. Zhang, , and W. Horowitz, 2013: Quality assessment of meteorological data for the Beaufort and Chukchi Sea coastal region using automated routines. Arctic, in press.

    • Search Google Scholar
    • Export Citation
  • Singh, R., , C. M. Kishtawal, , S. P. Ojha, , and P. K. Pal, 2012: Impact of assimilation of Atmospheric InfraRed Sounder (AIRS) radiances and retrievals in the WRF 3D-Var assimilation system. J. Geophys. Res., 117, D11107, doi:10.1029/2011JD017367.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech Note NCAR/TN–475+STR, 113 pp.

  • Stegall, S. T., , and J. Zhang, 2012: Wind field climatology, changes, and extremes in the Chukchi–Beaufort Seas and Alaska North Slope during 1979–2009. J. Climate, 25, 80758089.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., , M. M. Holland, , W. Meier, , T. Scambos, , and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34, L09501, doi:10.1029/2007GL029703.

    • Search Google Scholar
    • Export Citation
  • Webler, T., , and F. Lord, 2010: Planning for the human dimensions of oil spills and spill response. Environ. Manage., 45, 723738.

  • Wilson, A. B., , D. H. Bromwich, , and K. M. Hines, 2011: Evaluation of Polar WRF forecasts on the Arctic System Reanalysis domain: Surface and upper air analysis. J. Geophys. Res., 116, D11112, doi:10.1029/2010JD015013.

    • Search Google Scholar
    • Export Citation
  • Wilson, A. B., , D. H. Bromwich, , and K. M. Hines, 2012: Evaluation of Polar WRF forecasts on the Arctic System Reanalysis domain: 2. Atmospheric hydrologic cycle. J. Geophys. Res., 117, D04107, doi:10.1029/2011JD016765.

    • Search Google Scholar
    • Export Citation
  • Xavier, A. C., , B. F. T. Rudroff, , L. M. S. Berka, , and M. A. Moreira, 2006: Multi-temporal analysis of MODIS data to classify sugarcane crop. Int. J. Remote Sens., 27, 755768.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , and J. Zhang, 2001: Heat and freshwater budgets and pathways in the Arctic Mediterranean in a coupled ocean/sea-ice model. J. Oceanogr., 57, 207237.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , Q. Xiao, , and P. J. Fitzpatrick, 2007: The impact of multisatellite data on the initialization and simulation of Hurricane Lili’s (2002) rapid weakening phase. Mon. Wea. Rev., 135, 526548.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , X.-Y. Huang, , and N. Pan, 2013a: Development of the upgraded tangent linear and adjoint of the Weather Research and Forecasting (WRF) model. J. Atmos. Oceanic Technol.,30, 1180–1188.

  • Zhang, X., and Coauthors, 2013b: Beaufort and Chukchi Seas Mesoscale Meteorology Modeling Study, final report. OCS Study BOEM 2013-0119, Alaska OCS Region, Bureau of Ocean Energy Management, U.S. Dept. of the Interior, Anchorage, AK, 204 pp. [Available online at http://www.boem.gov/BOEM-2013-0119/.]

  • Mellor, G. L., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12 12 2
PDF Downloads 7 7 1

Toward Producing the Chukchi–Beaufort High-Resolution Atmospheric Reanalysis (CBHAR) via the WRFDA Data Assimilation System

View More View Less
  • 1 Department of Energy and Environmental Systems, North Carolina A&T State University, Greensboro, North Carolina
  • 2 Arctic Region Supercomputing Center, University of Alaska Fairbanks, Fairbanks, Alaska
  • 3 Department of Energy and Environmental Systems, and Department of Physics, North Carolina A&T State University, Greensboro, North Carolina
© Get Permissions
Restricted access

Abstract

The Weather Research and Forecasting Model (WRF) and its variational data assimilation system (WRFDA) are applied to the Chukchi–Beaufort Seas and adjacent Arctic Slope region for high-resolution regional atmospheric reanalysis study. To optimize WRFDA performance over the study area, a set of sensitivity experiments are carried out to analyze the model sensitivity to model background errors (BEs) and the assimilation of various observational datasets. Observational data are assimilated every 6 h and the results are verified against unassimilated observations. In the BE sensitivity analyses, the results of assimilating in situ surface observations with a customized, domain-dependent BE are compared to those using the WRF-provided global BE. It is found that the customized BE is necessary in order to achieve positive impacts from WRFDA assimilation for the study area. When seasonal variability is incorporated into the customized BE, the impacts are minor. Sensitivity analyses examining the assimilation of different datasets via WRFDA demonstrate that 1) positive impacts are always seen through the assimilation of in situ surface and radiosonde measurements, 2) assimilating Quick Scatterometer (QuikSCAT) winds improves the simulation of the 10-m wind field over ocean and coastal areas, and 3) selectively assimilating Moderate Resolution Imaging Spectroradiometer (MODIS) retrieved profiles under clear-sky and snow-free conditions is essential to avoid degradation of assimilation performance, while assimilation of Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) retrievals has little impact, most likely due to limited data availability. Based on the sensitivity results, a 1-yr (2009) experimental reanalysis is conducted and consistent improvements are achieved, particularly in capturing mesoscale processes such as mountain barrier and sea-breeze effects.

Corresponding author address: Jing Zhang, Dept. of Physics and Dept. of Energy and Environmental Systems, North Carolina A&T State University, 1601 E. Market St., Greensboro, NC 27411. E-mail: jzhang1@ncat.edu

Abstract

The Weather Research and Forecasting Model (WRF) and its variational data assimilation system (WRFDA) are applied to the Chukchi–Beaufort Seas and adjacent Arctic Slope region for high-resolution regional atmospheric reanalysis study. To optimize WRFDA performance over the study area, a set of sensitivity experiments are carried out to analyze the model sensitivity to model background errors (BEs) and the assimilation of various observational datasets. Observational data are assimilated every 6 h and the results are verified against unassimilated observations. In the BE sensitivity analyses, the results of assimilating in situ surface observations with a customized, domain-dependent BE are compared to those using the WRF-provided global BE. It is found that the customized BE is necessary in order to achieve positive impacts from WRFDA assimilation for the study area. When seasonal variability is incorporated into the customized BE, the impacts are minor. Sensitivity analyses examining the assimilation of different datasets via WRFDA demonstrate that 1) positive impacts are always seen through the assimilation of in situ surface and radiosonde measurements, 2) assimilating Quick Scatterometer (QuikSCAT) winds improves the simulation of the 10-m wind field over ocean and coastal areas, and 3) selectively assimilating Moderate Resolution Imaging Spectroradiometer (MODIS) retrieved profiles under clear-sky and snow-free conditions is essential to avoid degradation of assimilation performance, while assimilation of Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) retrievals has little impact, most likely due to limited data availability. Based on the sensitivity results, a 1-yr (2009) experimental reanalysis is conducted and consistent improvements are achieved, particularly in capturing mesoscale processes such as mountain barrier and sea-breeze effects.

Corresponding author address: Jing Zhang, Dept. of Physics and Dept. of Energy and Environmental Systems, North Carolina A&T State University, 1601 E. Market St., Greensboro, NC 27411. E-mail: jzhang1@ncat.edu
Save