Numerical Simulations of Island-Induced Circulations and Windward Katabatic Flow over the Guadeloupe Archipelago

Raphaël Cécé Department of Physics, University of the French West Indies and French Guiana, Pointe-à-Pitre, Guadeloupe

Search for other papers by Raphaël Cécé in
Current site
Google Scholar
PubMed
Close
,
Didier Bernard Department of Physics, University of the French West Indies and French Guiana, Pointe-à-Pitre, Guadeloupe

Search for other papers by Didier Bernard in
Current site
Google Scholar
PubMed
Close
,
Christophe d’Alexis Department of Physics, University of the French West Indies and French Guiana, Pointe-à-Pitre, Guadeloupe

Search for other papers by Christophe d’Alexis in
Current site
Google Scholar
PubMed
Close
, and
Jean-François Dorville Department of Physics, University of West Indies, Kingston, Jamaica

Search for other papers by Jean-François Dorville in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This article deals with the first high-resolution numerical modeling of the weather over the small and high islands of the Guadeloupe archipelago. Its main goal is to analyze the mechanisms that drive local-scale airflow circulations over this archipelago, using the 1-km Weather Research and Forecasting Model (WRF). Three meteorological situations corresponding to weak trade winds (WTW), medium trade winds (MTW), and strong trade winds (STW) have been selected and are linked with local Froude number values of 0.21, 0.41, and 0.82, respectively. For these three weather types, simulated typical meteorological variables present a good agreement with observational data at several locations. The 48-h simulations allow the completion of the previous coarse observational descriptions that did not include a map of the wind, skin temperature, cloud cover, and sensible heat flux for the whole archipelago. The expected local wind regime areas (windward, inland, and leeward) are retrieved in the model outputs, including the predominance of thermal and orographic effects over Grande-Terre Island and Basse-Terre Island, respectively. Under STW, the convection is inhibited and the local circulations are driven by the orography. In the case of WTW, the model simulates well a katabatic wind, inducing cold nocturnal reversed flow on the windward coast of Basse-Terre. This circulation, opposing the trade winds, extends to the sea and Grande-Terre Island. This flow has a maximum wind speed of 4.7 m s−1. This particular flow occurring in the most densely populated area produces an important nocturnal pollution period due to industrial sources (the diesel power plants of the archipelago).

Corresponding author address: Raphaël Cécé, Faculty of Sciences, Department of Physics, University of the French West Indies and French Guiana, Fouillole campus, Pointe-à-Pitre 97110, Guadeloupe. E-mail: raphael.cece@univ-ag.fr

Abstract

This article deals with the first high-resolution numerical modeling of the weather over the small and high islands of the Guadeloupe archipelago. Its main goal is to analyze the mechanisms that drive local-scale airflow circulations over this archipelago, using the 1-km Weather Research and Forecasting Model (WRF). Three meteorological situations corresponding to weak trade winds (WTW), medium trade winds (MTW), and strong trade winds (STW) have been selected and are linked with local Froude number values of 0.21, 0.41, and 0.82, respectively. For these three weather types, simulated typical meteorological variables present a good agreement with observational data at several locations. The 48-h simulations allow the completion of the previous coarse observational descriptions that did not include a map of the wind, skin temperature, cloud cover, and sensible heat flux for the whole archipelago. The expected local wind regime areas (windward, inland, and leeward) are retrieved in the model outputs, including the predominance of thermal and orographic effects over Grande-Terre Island and Basse-Terre Island, respectively. Under STW, the convection is inhibited and the local circulations are driven by the orography. In the case of WTW, the model simulates well a katabatic wind, inducing cold nocturnal reversed flow on the windward coast of Basse-Terre. This circulation, opposing the trade winds, extends to the sea and Grande-Terre Island. This flow has a maximum wind speed of 4.7 m s−1. This particular flow occurring in the most densely populated area produces an important nocturnal pollution period due to industrial sources (the diesel power plants of the archipelago).

Corresponding author address: Raphaël Cécé, Faculty of Sciences, Department of Physics, University of the French West Indies and French Guiana, Fouillole campus, Pointe-à-Pitre 97110, Guadeloupe. E-mail: raphael.cece@univ-ag.fr
Save
  • Bauer, M. H., G. J. Mayr, I. Vergeiner, and H. Pichler, 2000: Strongly nonlinear flow over and around a three-dimensional mountain as a function of the horizontal aspect ratio. J. Atmos. Sci., 57, 39713991.

    • Search Google Scholar
    • Export Citation
  • Bleuse, P., and N. Bleuse, 1997: Quelques aspects du vent en Guadeloupe (Some features of wind in Guadeloupe). Tech. Rep., Météo-France, DIRAG, Service Régional de Guadeloupe, 22 pp.

  • Brévignon, C., 2003: Atlas Climatique: l’Environnement Atmosphérique de la Guadeloupe, de Saint-Barthélémy et Saint-Martin (Climatic Atlas: Atmospheric Environment in Guadeloupe, Saint Barthélémy and Saint Martin). Météo-France, Service Régional de Guadeloupe, 92 pp.

  • Carlis, D. L., Y.-L. Chen, and V. R. Morris, 2010: Numerical simulations of island-scale airflow over Maui and the Maui vortex under summer trade wind conditions. Mon. Wea. Rev., 138, 27062736.

    • Search Google Scholar
    • Export Citation
  • Cécé, R., J.-F. Dorville, and D. Bernard, 2013: High resolution atmospheric and oceanic modelling: Impacts of Hurricane Dean over the Guadeloupe archipelago. Proc. Caribbean Waves 2, Gosier, Guadeloupe, LaRGE–UAG, 7172.

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • D’Alexis, C., 2011: Mesures expérimentales dans les basses couches de l’atmosphère tropicale insulaire (Guadeloupe): Micro-météorologie et composition chimique des masses d’air nocturnes en zone de mangrove [Experimental measurements in the insular tropical atmospheric boundary layer (Guadeloupe): Microscale meteorology and chemical composition of nocturnal air masses in mangrove area.] Ph.D. thesis, Université des Antilles et de la Guyane, Pointe-à-Pitre, Guadeloupe, 213 pp.

  • D’Alexis, C., A. Abouna, H. Berthelot, and D. Bernard, 2011: Characteristics of nocturnal breezes in the Windward Islands in the Southeastern Caribbean: Structure and nighttime regimes. J. Caribbean Acad. Sci.,5 (2). [Available online at http://ojs.mona.uwi.edu/index.php/cas/issue/view/281.]

  • De Souza, R. L., 1972: A study of atmospheric flow over a tropical island. Ph.D. thesis, Florida State University, 204 pp.

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Feng, J., and Y.-L. Chen, 1998: Evolution of katabatic flow on the island of Hawaii on 10 August 1990. Mon. Wea. Rev., 126, 21852199.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The Kain-Fritsch convective parameterization: An update. J. Korean Meteor. Soc.,42 (2), 129151.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol., 49, 18311844.

    • Search Google Scholar
    • Export Citation
  • Jury, M. R., S. Chiao, and E. W. Harmsen, 2009: Mesoscale structure of trade wind convection over Puerto Rico: Composite observations and numerical simulation. Bound.-Layer Meteor., 132, 289–313, doi:10.1007/s10546-009-9393-3.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Lefèvre, J., P. Marchesiello, N. C. Jourdain, C. Menkes, and A. Leroy, 2010: Weather regimes and orographic circulation around New Caledonia. Mar. Pollut. Bull., 61, 413431.

    • Search Google Scholar
    • Export Citation
  • Lesouëf, D., F. Gheusi, R. Delmas, and J. Escobar, 2011: Numerical simulations of local circulations and pollution transport over Reunion Island. Ann. Geophys., 29, 5369.

    • Search Google Scholar
    • Export Citation
  • Mahrer, Y., and R. A. Pielke, 1976: Numerical simulation of the airflow over Barbados. Mon. Wea. Rev., 104, 13921402.

  • Malkus, J. S., 1955: The effects of a large island upon the trade-wind air stream. Quart. J. Roy. Meteor. Soc., 81 (350), 538550.

  • Matthews, S., J. M. Hacker, J. Cole, J. Hare, C. N. Long, and R. M. Reynolds, 2007: Modification of the atmospheric boundary layer by a small island: Observations from Nauru. Mon. Wea. Rev., 135, 891905.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Morvan, K., 2011: Réalisation d’une climatologie et d’une classification en type de temps sur les Petites Antilles et la Guyane (Achievement of a climatology and a classification of weather types in the French Lesser Antilles and French Guiana). M.S. thesis, Université des Antilles et de la Guyane, 147 pp.

  • Nguyen, H. V., Y.-L. Chen, and F. Fujioka, 2010: Numerical simulations of island effects on airflow and weather during the summer over the island of Oahu. Mon. Wea. Rev., 138, 22532280.

    • Search Google Scholar
    • Export Citation
  • Oliphant, A. J., A. P. Sturman, and N. J. Tapper, 2001: The evolution and structure of a tropical island sea/land-breeze system, northern Australia. Meteor. Atmos. Phys., 78, 4559.

    • Search Google Scholar
    • Export Citation
  • Reisner, J. M., and P. K. Smolarkiewicz, 1994: Thermally forced low Froude number flow past three-dimensional obstacles. J. Atmos. Sci., 51, 117133.

    • Search Google Scholar
    • Export Citation
  • Savijrvi, H., and S. Matthews, 2004: Flow over small heat islands: A numerical sensitivity study. J. Atmos. Sci., 61, 859868.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. Tech. Rep. NCAR/TN-475+STR, National Center for Atmospheric Research, 125 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Smith, R. B., 1989: Hydrostatic airflow over mountains. Advances in Geophysics, Vol. 31, Academic Press, 5981.

  • Smith, R. B., and S. Grønås, 1993: Stagnation points and bifurcation in 3-D mountain airflow. Tellus,45A, 28–43.

  • Smith, R. B., and V. Grubiac, 1993: Aerial observations of Hawaii’s wake. J. Atmos. Sci., 50, 37283750.

  • Smith, R. B., A. C. Gleason, and P. A. Gluhosky, 1997: The wake of St. Vincent. J. Atmos. Sci., 54, 606623.

  • Smith, R. B., and Coauthors, 2012: Orographic precipitation in the tropics: The Dominica experiment. Bull. Amer. Meteor. Soc., 93, 15671579.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and R. Rotuno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 11541164.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., 1981: On the validation of models. Phys. Geogr., 2 (2), 184194.

  • Willmott, C. J., and K. Matsuura, 2005: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res., 30, 7982.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., S. M. Robeson, and K. Matsuura, 2012: A refined index of model performance. Int. J. Climatol., 32, 2088–2094, doi:10.1002/joc.2419.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., and Y.-L. Chen, 2005: Numerical simulations of the island-induced circulations over the island of Hawaii during HaRP. Mon. Wea. Rev., 133, 36933713.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 273 106 15
PDF Downloads 159 44 2