• Andreae, M. O., , D. Rosenfeld, , P. Artaxo, , A. A. Costa, , G. P. Frank, , K. M. Longo, , and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342.

    • Search Google Scholar
    • Export Citation
  • Ávila, E. E., , G. S. Longo, , and R. E. Bürgesser, 2003: Mechanism for electric charge separation by ejection of charged particles from an ice particle growing by riming. Atmos. Res., 69, 99108.

    • Search Google Scholar
    • Export Citation
  • Ávila, E. E., , R. E. Bürgesser, , N. E. Castellano, , R. G. Pereyra, , and C. P. R. Saunders, 2011: Charge separation in low-temperature ice cloud regions. J. Geophys. Res., 116, D14202, doi:10.1029/2010JD015475.

    • Search Google Scholar
    • Export Citation
  • Barth, M. C., , W. Brune, , C. Cantrell, , S. A. Rutledge, , J. H. Crawford, , F. Flocke, , and H. Huntrieser, 2013: Overview of the deep convective clouds and chemistry experiment. Preprints, Sixth Conf. on the Meteorological Applications of Lightning Data, Austin, TX, Amer. Meteor. Soc., J7.1. [Available online at https://ams.confex.com/ams/93Annual/webprogram/Paper222132.html.]

  • Behnke, S. A., , R. J. Thomas, , P. R. Krehbiel, , and S. R. McNutt, 2012: Spectacular lightning revealed in 2009 Mount Redoubt eruption. Eos, Trans. Amer. Geophys. Union, 93 (20), 193–194.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., , R. Hoferer, , D. A. Brunkow, , R. Schwerdtfeger, , V. Chandrasekar, , S. A. Rutledge, , J. George, , and P. C. Kennedy, 2011: Design and performance characteristics of the new 8.5-m dual-offset Gregorian antenna for the CSU–CHILL radar. J. Atmos. Oceanic Technol., 28, 907920.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., , and S. A. Rutledge, 1996: A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. Meteor. Atmos. Phys., 59, 3364.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., , and S. A. Rutledge, 1998: Electrical and multiparameter radar observations of a severe hailstorm. J. Geophys. Res., 103 (D12), 13 97914 000.

    • Search Google Scholar
    • Export Citation
  • Coen, J. L., , M. Cameron, , J. Michalakes, , E. G. Patton, , P. J. Riggan, , and K. M. Yedinak, 2013: WRF-Fire: Coupled weather–wildland fire modeling with the Weather Research and Forecasting model. J. Appl. Meteor. Climatol., 52, 1638.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., , and M. J. Murphy, 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the US NLDN. IEEE Trans. Electromagn. Compat., 51 (3), 499518.

    • Search Google Scholar
    • Export Citation
  • Dolan, B. A., , and S. A. Rutledge, 2007: An integrated display and analysis methodology for multivariable radar data. J. Appl. Meteor. Climatol., 46, 11961213.

    • Search Google Scholar
    • Export Citation
  • Dolan, B. A., , and S. A. Rutledge, 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., , and J. C. Willett, 2007: Observed enhancement of reflectivity and the electric field in long-lived Florida anvils. Mon. Wea. Rev., 135, 33623380.

    • Search Google Scholar
    • Export Citation
  • Fromm, M., , D. T. Lindsey, , R. Servranckx, , G. Yue, , T. Trickl, , R. Sica, , P. Doucet, , and S. Godin-Beekmann, 2010: The untold story of pyrocumulonimbus. Bull. Amer. Meteor. Soc., 91, 11931209.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2005: The North Alabama lightning mapping array: Recent severe storm observations and future prospects. Atmos. Res., 76 (1), 423437.

    • Search Google Scholar
    • Export Citation
  • Hufford, G. L., , H. L. Kelley, , W. Sparkman, , and R. K. Moore, 1998: Use of real-time multisatellite and radar data to support forest fire management. Wea. Forecasting, 13, 592605.

    • Search Google Scholar
    • Export Citation
  • Inciweb, cited2013a: Hewlett fire. [Available online at http://www.inciweb.org/incident/2863/.]

  • Inciweb, cited2013b: High Park fire. [Available online at http://www.inciweb.org/incident/2904/.]

  • Inciweb, cited2013c: Waldo Canyon fire. [Available online at http://www.inciweb.org/incident/2929/.]

  • Jayaratne, E. R., , C. P. R. Saunders, , and J. Hallett, 1983: Laboratory studies of the charging of soft-hail during ice crystal interactions. Quart. J. Roy. Meteor. Soc., 109, 609630.

    • Search Google Scholar
    • Export Citation
  • Jenkins, M. A., 2004: Investigating the Haines Index using parcel model theory. Int. J. Wildland Fire, 13 (3), 297309.

  • Johnson, R. H., , R. S. Schumacher, , and D. T. Lindsey, 2013: Weather impacts on the June 2012 Colorado Waldo Canyon Fire disaster. Extended Abstracts, Impacts: Weather 2012, Austin, TX, Amer. Meteor. Soc., 3.4. [Available online at https://ams.confex.com/ams/93Annual/webprogram/Paper224455.html.]

  • Jones, T. A., , S. A. Christopher, , and W. Petersen, 2009: Dual-polarization radar characteristics of an apartment fire. J. Atmos. Oceanic Technol., 26, 22572269.

    • Search Google Scholar
    • Export Citation
  • Jungwirth, P., , D. Rosenfeld, , and V. Buch, 2005: A possible new molecular mechanism of thundercloud electrification. Atmos. Res., 76, 190205.

    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., , and S. A. Rutledge, 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , N. BenMoshe, , and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 17211748.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., , R. J. Thomas, , W. Rison, , T. Hamlin, , J. Harlin, , and M. Davis, 2000: GPS-based mapping system reveals lightning inside storms. Eos, Trans. Amer. Geophys. Union, 81 (3), 2125.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., , W. Rison, , R. Thomas, , T. Hamlin, , and J. Harlin, 2003: Lightning modes in thunderstorms. 2003 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract AE31A-06.

  • Krehbiel, P. R., , W. Rison, , and R. Thomas, 2012: Lightning mapping observations during DC3 in northern Colorado. 2012 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract AE12A-05.

  • Kuhlman, K. M., , D. R. MacGorman, , M. I. Biggerstaff, , and P. R. Krehbiel, 2009: Lightning initiation in the anvils of two supercell storms. Geophys. Res. Lett., 36, L07802, doi:10.1029/2008GL036650.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., , and S. A. Rutledge, 2002: Relationships between convective storm kinematics, precipitation, and lightning. Mon. Wea. Rev., 130, 24922506.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., , and S. A. Rutledge, 2006: Cloud-to-ground lightning downwind of the 2002 Hayman forest fire in Colorado. Geophys. Res. Lett., 33, L03804, doi:10.1029/2005GL024608.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., , and S. A. Rutledge, 2008: Kinematic, microphysical, and electrical aspects of an asymmetric bow-echo mesoscale convective system observed during STEPS 2000. J. Geophys. Res., 113, D08213, doi:10.1029/2006JD007709.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., , and S. A. Rutledge, 2011: A framework for the statistical analysis of large radar and lightning datasets: Results from STEPS 2000. Mon. Wea. Rev., 139, 25362551.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and Coauthors, 2013: Highlights of Colorado ground facility operations during DC3. Preprints, Sixth Conf. on the Meteorological Applications of Lightning Data, Austin, TX, Amer. Meteor. Soc., J7.2. [Available online at https://ams.confex.com/ams/93Annual/webprogram/Paper221524.html.]

  • Latham, D. J., 1991: Lightning flashes from a prescribed fire-induced cloud. J. Geophys. Res., 96 (D9), 17 15117 157.

  • Latham, D. J., 1999: Space charge generated by wind tunnel fires. Atmos. Res., 51, 267278.

  • Lindsey, D. T., , and M. Fromm, 2008: Evidence of the cloud lifetime effect from wildfire-induced thunderstorms. Geophys. Res. Lett., 35, L22809, doi:10.1029/2008GL035680.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., , T. E. Nelson, , E. R. Williams, , J. A. Cramer, , and T. R. Turner, 1998: Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke from fires. Science, 282, 7780.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Coauthors, 2008: TELEX: The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 9971013.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., , and C. L. Ziegler, 2013: Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model. J. Atmos. Sci., 70, 20322050.

    • Search Google Scholar
    • Export Citation
  • Mason, B. J., , and J. Maybank, 1960: The fragmentation and electrification of freezing water drops. Quart. J. Roy. Meteor. Soc., 86, 176185.

    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., , D. S. Zrnić, , R. M. Rabin, , and P. Zhang, 2008: Radar polarimetric signatures of fire plumes in Oklahoma. Geophys. Res. Lett., 35, L14815, doi:10.1029/2008GL034311.

    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., , D. S. Zrnić, , and R. M. Rabin, 2009: Polarimetric radar properties of smoke plumes: A model. J. Geophys. Res., 114, D21204, doi:10.1029/2009JD012647.

    • Search Google Scholar
    • Export Citation
  • Meyer, T. C., , T. J. Lang, , S. A. Rutledge, , W. A. Lyons, , S. A. Cummer, , G. Lu, , and D. T. Lindsey, 2013: Radar and lightning analyses of gigantic jet-producing storms. J. Geophys. Res. Atmos., 118, 28722888, doi:10.1002/jgrd.50302.

    • Search Google Scholar
    • Export Citation
  • Miller, L. J., , C. G. Mohr, , and A. J. Weinheimer, 1986: The simple rectification to Cartesian space of folded radial velocities from Doppler radar sampling. J. Atmos. Oceanic Technol., 3, 162174.

    • Search Google Scholar
    • Export Citation
  • Mitzeva, R., , C. Saunders, , and B. Tsenova, 2006: Parameterisation of non-inductive charging in thunderstorm regions free of cloud droplets. Atmos. Res., 82 (1), 102111.

    • Search Google Scholar
    • Export Citation
  • Mohr, C. G., , and R. L. Vaughn, 1979: An economical approach for Cartesian interpolation and display of reflectivity factor data in three-dimensional space. J. Appl. Meteor., 18, 661670.

    • Search Google Scholar
    • Export Citation
  • Mohr, C. G., , L. J. Miller, , R. L. Vaughn, , and H. W. Frank, 1986: On the merger of mesoscale datasets into a common Cartesian format for efficient and systematic analysis. J. Atmos. Oceanic Technol., 3, 143161.

    • Search Google Scholar
    • Export Citation
  • Reynolds, S. E., , M. Brook, , and M. F. Gourley, 1957: Thunderstorm charge separation. J. Meteor., 14, 426436.

  • Rison, W., , R. J. Thomas, , P. R. Krehbiel, , T. Hamlin, , and J. Harlin, 1999: A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys. Res. Lett., 26, 35733576.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 31053108.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , and W. L. Woodley, 2000: Deep convective clouds with sustained supercooled liquid water down to −37.5°C. Nature, 405, 440442.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , M. Fromm, , J. Trentmann, , G. Luderer, , M. O. Andreae, , and R. Servranckx, 2007: The Chisholm firestorm: Observed microstructure, precipitation and lightning activity of a pyro-cumulonimbus. Atmos. Chem. Phys., 7 (3), 645659.

    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., , and H. E. Fuelberg, 2011: Seasonal, regional, and storm-scale variability of cloud-to-ground lightning characteristics in Florida. Mon. Wea. Rev., 139, 18261843.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., , and D. Zrnić, 1996: Assessment of rainfall measurement that uses specific differential phase. J. Appl. Meteor., 35, 20802090.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., , W. D. Keith, , and R. P. Mitzeva, 1991: The effect of liquid water on thunderstorm charging. J. Geophys. Res., 96 (D6), 11 00711 017.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., 1984: Equivalent radar reflectivity factors for snow and ice particles. J. Climate Appl. Meteor., 23, 12581260.

  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548.

  • Tessendorf, S. A., , L. J. Miller, , K. C. Wiens, , and S. A. Rutledge, 2005: The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62, 41274150.

    • Search Google Scholar
    • Export Citation
  • Thomas, R. J., , P. R. Krehbiel, , W. Rison, , S. J. Hunyady, , W. P. Winn, , T. Hamlin, , and J. Harlin, 2004: Accuracy of the Lightning Mapping Array. J. Geophys. Res., 109, D14207, doi:10.1029/2004JD004549.

    • Search Google Scholar
    • Export Citation
  • Thomas, R. J., and Coauthors, 2007: Electrical activity during the 2006 Mount St. Augustine volcanic eruptions. Science, 315 (5815), 1097.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., , S. M. Ellis, , R. Oye, , D. S. Zrnić, , A. V. Ryzhkov, , and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388.

    • Search Google Scholar
    • Export Citation
  • Vonnegut, B., , D. J. Latham, , C. B. Moore, , and S. J. Hunyady, 1995: An explanation for anomalous lightning from forest fire clouds. J. Geophys. Res., 100 (D3), 50375050.

    • Search Google Scholar
    • Export Citation
  • Weaver, J. F., , D. Lindsey, , D. Bikos, , C. C. Schmidt, , and E. Prins, 2004: Fire detection using GOES rapid scan imagery. Wea. Forecasting, 19, 496510.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., , S. A. Rutledge, , and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., , and S. R. McNutt, 2005: Total water contents in volcanic eruption clouds and implications for electrification and lightning. Recent Progress in Lightning Physics, C. Pontikis, Ed., Research Signpost Publishing, 81–93.

  • Williams, E. R., , V. Mushtak, , D. Rosenfeld, , S. Goodman, , and D. Boccippio, 2005: Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics, and lightning flash rate. Atmos. Res., 76, 288306.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) System: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338.

    • Search Google Scholar
    • Export Citation
  • Zilch, L. W., , J. T. Maze, , J. W. Smith, , and M. F. Jarrold, 2009: Freezing, fragmentation, and charge separation in sonic sprayed water droplets. Int. J. Mass Spectrom., 283, 191199.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 66 66 19
PDF Downloads 44 44 13

Lightning in Wildfire Smoke Plumes Observed in Colorado during Summer 2012

View More View Less
  • 1 NASA Marshall Space Flight Center, Huntsville, Alabama
  • 2 Colorado State University, Fort Collins, Colorado
  • 3 New Mexico Institute of Mining and Technology, Socorro, New Mexico
  • 4 NOAA/NESDIS/STAR/RAMMB, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

Pyrocumulus clouds above three Colorado wildfires (Hewlett Gulch, High Park, and Waldo Canyon; all during the summer of 2012) electrified and produced localized intracloud discharges whenever the smoke plumes grew above 10 km MSL (approximately −45°C). Vertical development occurred during periods of rapid wildfire growth, as indicated by the shortwave infrared channel on a geostationary satellite, as well as by incident reports. The lightning discharges were detected by a three-dimensional lightning mapping network. Based on Doppler and polarimetric radar observations, they likely were caused by ice-based electrification processes that did not involve significant amounts of high-density graupel. Plumes that did not feature significant amounts of radar-inferred ice at high altitudes did not produce lightning, which means lightning observations may assist in diagnosing pyrocumulus features that could affect the radiative characteristics and chemical composition of the upper troposphere. The lightning was not detected by the National Lightning Detection Network, implying that pyrocumulus lightning may occur more frequently than past studies (which lacked access to detailed intracloud information) might suggest. Given the known spatial and temporal advantages provided by lightning networks over radar and satellite data, the results also indicate a possible new application for lightning data in monitoring wildfire state.

Corresponding author address: Timothy J. Lang, NASA Marshall Space Flight Center (ZP11), Huntsville, AL 35812. E-mail: timothy.j.lang@nasa.gov

Abstract

Pyrocumulus clouds above three Colorado wildfires (Hewlett Gulch, High Park, and Waldo Canyon; all during the summer of 2012) electrified and produced localized intracloud discharges whenever the smoke plumes grew above 10 km MSL (approximately −45°C). Vertical development occurred during periods of rapid wildfire growth, as indicated by the shortwave infrared channel on a geostationary satellite, as well as by incident reports. The lightning discharges were detected by a three-dimensional lightning mapping network. Based on Doppler and polarimetric radar observations, they likely were caused by ice-based electrification processes that did not involve significant amounts of high-density graupel. Plumes that did not feature significant amounts of radar-inferred ice at high altitudes did not produce lightning, which means lightning observations may assist in diagnosing pyrocumulus features that could affect the radiative characteristics and chemical composition of the upper troposphere. The lightning was not detected by the National Lightning Detection Network, implying that pyrocumulus lightning may occur more frequently than past studies (which lacked access to detailed intracloud information) might suggest. Given the known spatial and temporal advantages provided by lightning networks over radar and satellite data, the results also indicate a possible new application for lightning data in monitoring wildfire state.

Corresponding author address: Timothy J. Lang, NASA Marshall Space Flight Center (ZP11), Huntsville, AL 35812. E-mail: timothy.j.lang@nasa.gov
Save