Mobile, Phased-Array, Doppler Radar Observations of Tornadoes at X Band

Michael M. French School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Michael M. French in
Current site
Google Scholar
PubMed
Close
,
Howard B. Bluestein School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Howard B. Bluestein in
Current site
Google Scholar
PubMed
Close
,
Ivan PopStefanija ProSensing, Inc., Amherst, Massachusetts

Search for other papers by Ivan PopStefanija in
Current site
Google Scholar
PubMed
Close
,
Chad A. Baldi ProSensing, Inc., Amherst, Massachusetts

Search for other papers by Chad A. Baldi in
Current site
Google Scholar
PubMed
Close
, and
Robert T. Bluth Naval Postgraduate School, Monterey, California

Search for other papers by Robert T. Bluth in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A mobile, phased-array Doppler radar, the Mobile Weather Radar, 2005 X-band, Phased Array (MWR-05XP), has been used since 2007 to obtain data in supercells and tornadoes. Rapidly updating, volumetric data of tornadic vortex signatures (TVSs) associated with four tornadoes are used to investigate the time–height evolution of TVS intensity, position, and dissipation up through storm midlevels. Both TVS intensity and position were highly variable in time and height even during tornado mature phases. In one case, a TVS associated with a tornado dissipated aloft and a second TVS formed shortly thereafter while there was one continuous TVS near the ground. In a second case, the TVS associated with a long-lived, violent tornado merged with a second TVS (likely a second cyclonic tornado) causing the original TVS to strengthen. TVS dissipation occurred first at a height of ~1.5 km AGL and then at progressively higher levels in two cases; TVS dissipation occurred last in the lowest 1 km in three cases examined. Possible explanations are provided for the unsteady nature of TVS intensity and a conceptual model is presented for the initial dissipation of TVSs at ~1.5 km AGL.

Current affiliation: NOAA/National Severe Storms Laboratory, Norman, Oklahoma.

Corresponding author address: Michael M. French, NOAA/National Severe Storms Laboratory, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: michael.french@noaa.gov

Abstract

A mobile, phased-array Doppler radar, the Mobile Weather Radar, 2005 X-band, Phased Array (MWR-05XP), has been used since 2007 to obtain data in supercells and tornadoes. Rapidly updating, volumetric data of tornadic vortex signatures (TVSs) associated with four tornadoes are used to investigate the time–height evolution of TVS intensity, position, and dissipation up through storm midlevels. Both TVS intensity and position were highly variable in time and height even during tornado mature phases. In one case, a TVS associated with a tornado dissipated aloft and a second TVS formed shortly thereafter while there was one continuous TVS near the ground. In a second case, the TVS associated with a long-lived, violent tornado merged with a second TVS (likely a second cyclonic tornado) causing the original TVS to strengthen. TVS dissipation occurred first at a height of ~1.5 km AGL and then at progressively higher levels in two cases; TVS dissipation occurred last in the lowest 1 km in three cases examined. Possible explanations are provided for the unsteady nature of TVS intensity and a conceptual model is presented for the initial dissipation of TVSs at ~1.5 km AGL.

Current affiliation: NOAA/National Severe Storms Laboratory, Norman, Oklahoma.

Corresponding author address: Michael M. French, NOAA/National Severe Storms Laboratory, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: michael.french@noaa.gov
Save
  • Adlerman, E. J., and K. K. Droegemeier, 2005: The dependence of numerically simulated cyclic mesocyclogenesis upon environmental vertical wind shear. Mon. Wea. Rev., 133, 35953623.

    • Search Google Scholar
    • Export Citation
  • Alexander, C. R., 2010: A mobile radar based climatology of supercell tornado structure and dynamics. Ph.D. dissertation, University of Oklahoma, Norman, OK, 229 pp.

  • Alexander, C. R., and J. Wurman, 2005: The 30 May 1998 Spencer, South Dakota, storm. Part I: The structural evolution and environment of the tornadoes. Mon. Wea. Rev., 133, 7297.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., A. McGee, R. Ducharme, R. M. Wakimoto, and J. Wurman, 2012: The LaGrange tornado during VORTEX2. Part II: Photogrammetric analysis of the tornado combined with dual-Doppler radar data. Mon. Wea. Rev., 140, 29392958.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and A. L. Pazmany, 2000: Observations of tornadoes and other convective phenomena with a mobile, 3-mm wavelength, Doppler radar: The spring 1999 field experiment. Bull. Amer. Meteor. Soc., 81, 29392951.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., E. W. McCaul, G. P. Byrd, and G. R. Woodall, 1988: The unusual dissipation of a tornado funnel. Mon. Wea. Rev., 116, 950952.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., A. L. Pazmany, J. C. Galloway, and R. E. Mcintosh, 1995: Studies of the substructure of severe convective storms using a mobile 3-mm-wavelength Doppler radar. Bull. Amer. Meteor. Soc., 76, 21552169.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., W. Lee, M. Bell, C. C. Weiss, and A. L. Pazmany, 2003: Mobile Doppler radar observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999. Part II: Tornado-vortex structure. Mon. Wea. Rev., 131, 29682984.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., M. M. French, I. PopStefanija, R. T. Bluth, and J. B. Knorr, 2010: A mobile, phased-array Doppler radar for the study of severe convective storms: The MWR-05XP. Bull. Amer. Meteor. Soc., 91, 579600.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1981: Finestructure of the Del City-Edmond tornadic mesocirculation. Mon. Wea. Rev., 109, 635647.

  • Brown, R. A., L. R. Lemon, and D. W. Burgess, 1978: Tornado detection by pulsed Doppler radar. Mon. Wea. Rev., 106, 2939.

  • Burgess, D. W., V. T. Wood, and R. A. Brown, 1982: Mesocyclone evolution statistics. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 422424.

    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., M. A. Magsig, J. Wurman, D. C. Dowell, and Y. Richardson, 2002: Radar observations of the 3 May 1999 Oklahoma City tornado. Wea. Forecasting, 17, 456471.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., M. J. Carpenter, and C. D. Burghart, 1985: Doppler radar sampling limitation in convective storms. J. Atmos. Oceanic Technol., 2, 357361.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002a: The 8 June 1995 McLean, Texas, storm. Part I: Observations of cyclic tornadogenesis. Mon. Wea. Rev., 130, 26262648.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002b: The 8 June 1995 McLean, Texas, storm. Part II: Cyclic tornado formation, maintenance, and dissipation. Mon. Wea. Rev., 130, 26492670.

    • Search Google Scholar
    • Export Citation
  • French, M. M., 2012: Mobile, phased-array, Doppler radar observations of tornadoes at X band. Ph.D. dissertation, University of Oklahoma, Norman, OK, 322 pp.

  • French, M. M., H. B. Bluestein, D. C. Dowell, L. J. Wicker, M. R. Kramar, and A. L. Pazmany, 2008: High-resolution, mobile Doppler radar observations of cyclic mesocyclogenesis in a supercell. Mon. Wea. Rev., 136, 49975016.

    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, I. PopStefanija, C. A. Baldi, and R. T. Bluth, 2013:Reexamining the vertical development of tornadic vortex signature in supercells. Mon. Wea. Rev., 141, 4576–4601.

    • Search Google Scholar
    • Export Citation
  • Golden, J. H., and D. Purcell, 1977: Photogrammetric velocities for the Great Bend, Kansas, tornado of 30 August 1974: Accelerations and asymmetries. Mon. Wea. Rev., 105, 485492.

    • Search Google Scholar
    • Export Citation
  • Golden, J. H., and D. Purcell, 1978: Life cycle of the Union City, Oklahoma, tornado and comparison with waterspouts. Mon. Wea. Rev., 106, 311.

    • Search Google Scholar
    • Export Citation
  • Kosiba, K., and J. Wurman, 2010: The three-dimensional axisymmetric wind field structure of the Spencer, South Dakota, 1998 tornado. J. Atmos. Sci., 67, 30743083.

    • Search Google Scholar
    • Export Citation
  • Kosiba, K., J. Wurman, Y. Richardson, P. Markowski, and P. Robinson, 2013: The genesis of the Goshen County, Wyoming, tornado (5 June 2009). Mon. Wea. Rev., 141, 11571181.

    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., and J. Wurman, 2005: Diagnosed three-dimensional axisymmetric structure of the Mulhall tornado on 3 May 1999. J. Atmos. Sci., 62, 23732393.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., Y. Richardson, J. Marquis, J. Wurman, K. Kosiba, P. Robinson, D. Dowell, and E. Rasmussen, 2012a: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part I: Evolution of kinematic and surface thermodynamic fields. Mon. Wea. Rev., 140, 28872915.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., Y. Richardson, J. Marquis, J. Wurman, K. Kosiba, P. Robinson, E. Rasmussen, and D. Dowell, 2012b: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part II: Intensification of low-level rotation. Mon. Wea. Rev., 140, 29162938.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, J. Wurman, and P. Markowski, 2008: Single- and dual-Doppler analysis of a tornadic vortex and surrounding storm-scale flow in the Crowell, Texas, supercell of 30 April 2000. Mon. Wea. Rev., 136, 50175043.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, P. M. Markowski, D. C. Dowell, J. M. Wurman, K. A. Kosiba, and P. Robinson, 2012a: An investigation of the tornadic stage of the Goshen County, Wyoming, supercell of 5 June 2009 using EnKF assimilation of mobile radar data collected during VORTEX2. Preprints, 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 169. [Available online at https://ams.confex.com/ams/26SLS/webprogram/Paper211344.html.]

  • Marquis, J., Y. Richardson, P. M. Markowski, D. C. Dowell, and J. M. Wurman, 2012b: Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon. Wea. Rev., 140, 327.

    • Search Google Scholar
    • Export Citation
  • Moller, A. R., 1978: The improved NWS storm spotters’ training program at Ft. Worth, Texas. Bull. Amer. Meteor. Soc., 59, 15741582.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2012: Three-dimensional instabilities in tornado-like vortices with secondary circulations. J. Fluid Mech., 711, 61100.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and B. F. Farrell, 1999: The structure and dynamics of tornado-like vortices. J. Atmos. Sci., 56, 29082936.

  • Pazmany, A. L., J. B. Mead, H. B. Bluestein, J. C. Snyder, and J. B. Houser, 2013: A mobile, rapid-scanning, X-band, polarimetric (RaXPol) Doppler-radar system. J. Atmos. Oceanic Technol., 30, 13981413.

    • Search Google Scholar
    • Export Citation
  • Richardson, Y. P., P. Markowski, J. N. Marquis, J. Wurman, K. A. Kosiba, P. Robinson, D. W. Burgess, and C. C. Weiss, 2012: Tornado maintenance and demise in the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Preprints, 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 12.2. [Available online at https://ams.confex.com/ams/15MESO/webprogram/Paper228075.html.]

  • Shapiro, A., 2001: A centrifugal wave solution of the Euler and Navier-Stokes equations. Z. Angew. Math. Phys., 52, 913923.

  • Tanamachi, R. L., H. B. Bluestein, J. B. Houser, S. J. Frasier, and K. M. Hardwick, 2012: Mobile, X-band, polarimetric Doppler radar observations of the 4 May 2007 Greensburg, Kansas, tornadic supercell. Mon. Wea. Rev., 140, 21032125.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., E. D. Mitchell, G. A. Tipton, D. W. Effertz, A. I. Watson, D. L. Andra, and M. A. Magsig, 1999: Descending and nondescending tornadic vortex signatures detected by WSR-88Ds. Wea. Forecasting, 14, 625639.

    • Search Google Scholar
    • Export Citation
  • Vasiloff, S. V., 1993: Single-Doppler radar study of a variety of tornado types. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 223–231.

  • Wakimoto, R. M., and B. E. Martner, 1992: Observations of a Colorado tornado. Part II: Combined photogrammetric and Doppler radar analysis. Mon. Wea. Rev., 120, 522543.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., N. T. Atkins, and J. Wurman, 2011: The LaGrange tornado during VORTEX2. Part I: Photogrammetry analysis of the tornado combined with single-Doppler radar data. Mon. Wea. Rev., 139, 22332258.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., P. Stauffer, W.-C. Lee, N. T. Atkins, and J. Wurman, 2012: Finescale structure of the LaGrange, Wyoming, tornado during VORTEX2: GBVTD and photogrammetric analyses. Mon. Wea. Rev., 140, 33973418.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 26752703.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. Academic Press, 627 pp.

  • Wood, V. T., and R. A. Brown, 1997: Effects of radar sampling on single-Doppler velocity signatures of mesocyclones and tornadoes. Wea. Forecasting, 12, 928938.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., 2002: The multiple-vortex structure of a tornado. Wea. Forecasting, 17, 473505.

  • Wurman, J., and S. Gill, 2000: Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado. Mon. Wea. Rev., 128, 21352164.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., and M. Randall, 2001: An inexpensive, mobile, rapid-scan radar. Preprints, 30th Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., 98100.

  • Wurman, J., J. Straka, E. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14, 15021512.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., Y. Richardson, C. Alexander, S. Weygandt, and P. Zhang, 2007a: Dual-Doppler and single-Doppler analysis of a tornadic storm undergoing mergers and repeated tornadogenesis. Mon. Wea. Rev., 135, 736758.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., Y. Richardson, C. Alexander, S. Weygandt, and P. Zhang, 2007b: Dual-Doppler analysis of winds and vorticity budget terms near a tornado. Mon. Wea. Rev., 135, 23922405.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, P. Markowski, Y. Richardson, D. Dowell, and P. Robinson, 2010: Finescale single- and dual-Doppler analysis of a tornado intensification, maintenance, and dissipation in the Orleans, Nebraska, supercell. Mon. Wea. Rev., 138, 44394455.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. B. Bluestein, 2012: The second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, and P. Robinson, 2013: In situ, Doppler radar, and video observations of the interior structure of a tornado and wind–damage relationship. Bull. Amer. Meteor. Soc., 94, 835–846.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1641 658 58
PDF Downloads 690 173 13