Evaluation of Tropical Cyclones in the Canadian Global Modeling System: Sensitivity to Moist Process Parameterization

A. Zadra Numerical Weather Prediction Research Section, Environment Canada, Dorval, Quebec, Canada

Search for other papers by A. Zadra in
Current site
Google Scholar
PubMed
Close
,
R. McTaggart-Cowan Numerical Weather Prediction Research Section, Environment Canada, Dorval, Quebec, Canada

Search for other papers by R. McTaggart-Cowan in
Current site
Google Scholar
PubMed
Close
,
P. A. Vaillancourt Numerical Weather Prediction Research Section, Environment Canada, Dorval, Quebec, Canada

Search for other papers by P. A. Vaillancourt in
Current site
Google Scholar
PubMed
Close
,
M. Roch Numerical Weather Prediction Research Section, Environment Canada, Dorval, Quebec, Canada

Search for other papers by M. Roch in
Current site
Google Scholar
PubMed
Close
,
S. Bélair Numerical Weather Prediction Research Section, Environment Canada, Dorval, Quebec, Canada

Search for other papers by S. Bélair in
Current site
Google Scholar
PubMed
Close
, and
A.-M. Leduc Canadian Meteorological Centre, Environment Canada, Dorval, Quebec, Canada

Search for other papers by A.-M. Leduc in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Deep convection is one of various complex processes driving the evolution of tropical cyclones (TCs). The scales associated with deep convection are too small to be resolved by global NWP models. In the deep convection parameterization used by the Canadian Global Deterministic Prediction System (GDPS), the trigger function depends on various criteria, one of which is the adjustable “trigger velocity” parameter, a vertical velocity threshold used in the parcel stability test of the scheme. In this study, the sensitivity of the GDPS TC activity and precipitation distribution to convective triggering parameters is investigated by varying this threshold. Multiple basins are considered for three TC seasons, and the impacts of trigger velocity variations on TC statistics (forecast hits, bias, false alarms, and track and intensity errors) and on the model’s genesis potential index (GPI) are measured. It is shown that a reduction of the trigger velocity, from 0.05 to 0.01 m s−1, over the tropical oceans leads to increased convective stabilization of atmospheric columns, as well as an increase in convective precipitation amounts but a reduction in total (subgrid plus grid scale) precipitation accumulations. The trigger adjustment also yields a significant reduction of TC false alarm ratios, with no impact on forecast mean errors for true cyclones other than an expected deterioration of the intensity bias, and a systematic reduction of the average GPI over various basins at all lead times. A conceptual model is proposed to explain the relation between trigger adjustments and TC development.

Corresponding author address: Ayrton Zadra, RPN–Environment Canada, 2121 TransCanada Highway, Dorval, QC H1J 3P9, Canada. E-mail: ayrton.zadra@ec.gc.ca

Abstract

Deep convection is one of various complex processes driving the evolution of tropical cyclones (TCs). The scales associated with deep convection are too small to be resolved by global NWP models. In the deep convection parameterization used by the Canadian Global Deterministic Prediction System (GDPS), the trigger function depends on various criteria, one of which is the adjustable “trigger velocity” parameter, a vertical velocity threshold used in the parcel stability test of the scheme. In this study, the sensitivity of the GDPS TC activity and precipitation distribution to convective triggering parameters is investigated by varying this threshold. Multiple basins are considered for three TC seasons, and the impacts of trigger velocity variations on TC statistics (forecast hits, bias, false alarms, and track and intensity errors) and on the model’s genesis potential index (GPI) are measured. It is shown that a reduction of the trigger velocity, from 0.05 to 0.01 m s−1, over the tropical oceans leads to increased convective stabilization of atmospheric columns, as well as an increase in convective precipitation amounts but a reduction in total (subgrid plus grid scale) precipitation accumulations. The trigger adjustment also yields a significant reduction of TC false alarm ratios, with no impact on forecast mean errors for true cyclones other than an expected deterioration of the intensity bias, and a systematic reduction of the average GPI over various basins at all lead times. A conceptual model is proposed to explain the relation between trigger adjustments and TC development.

Corresponding author address: Ayrton Zadra, RPN–Environment Canada, 2121 TransCanada Highway, Dorval, QC H1J 3P9, Canada. E-mail: ayrton.zadra@ec.gc.ca
Save
  • Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., J. Mailhot, J. W. Strapp, and J. I. MacPherson, 1999: An examination of local versus nonlocal aspects of a TKE-based boundary layer scheme in clear convective conditions. J. Appl. Meteor., 38, 14991518.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., L.-P. Crevier, J. Mailhot, B. Bilodeau, and Y. Delage, 2003a: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part I: Warm season results. J. Hydrometeor., 4, 352370.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., R. Brown, J. Mailhot, B. Bilodeau, and L.-P. Crevier, 2003b: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part II: Cold season results. J. Hydrometeor., 4, 371386.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., J. Mailhot, C. Girard, and P. Vaillancourt, 2005: Boundary layer and shallow cumulus clouds in a medium-range forecast of a large-scale weather system. Mon. Wea. Rev., 133, 19381960.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., and Coauthors, 2007: Operational implementation of a 33-km version of GEM for global medium-range weather prediction at CMC. Can. Meteor. Oceanogr. Soc. Bull., 35 (3), 7784.

    • Search Google Scholar
    • Export Citation
  • Bélanger, J. I., P. J. Webster, J. A. Curry, and M. T. Jelinek, 2012: Extended prediction of north Indian Ocean tropical cyclones. Wea. Forecasting, 27, 757769.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 26622682.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 52, 233240.

  • Bougeault, P., and P. Lacarrère, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. Emanuel, and A. Sobel, 2006: Genesis potential index and ENSO in reanalyses and AGCMs. Preprints, 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 15C.2. [Available online at https://ams.confex.com/ams/pdfpapers/108038.pdf.]

  • Camargo, S. J., K. Emanuel, and A. Sobel, 2007a: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. Sobel, A. G. Barnston, and K. Emanuel, 2007b: Tropical cyclone genesis potential index in climate models. Tellus, 59A, 428443.

    • Search Google Scholar
    • Export Citation
  • Candille, G., C. Cote, P. L. Houtekamer, and G. Pellerin, 2007: Verification of an ensemble prediction system against observations. Mon. Wea. Rev., 135, 26882699.

    • Search Google Scholar
    • Export Citation
  • Caron, L.-P., C. Jones, and K. Winger, 2011: Impact of resolution and downscaling technique in simulating recent Atlantic tropical cyclone activity. Climate Dyn., 37, 869892.

    • Search Google Scholar
    • Export Citation
  • Caron, L.-P., C. Jones, P. Vaillancourt, and K. Winger, 2013: On the relationship between cloud–radiation interaction, atmospheric stability and Atlantic tropical cyclones in a variable-resolution climate model. Climate Dyn., 40, 12571269.

    • Search Google Scholar
    • Export Citation
  • CG-FV, 2012: Final Report on the 3rd Meeting of the CGFV. Coordination Group on Forecast Verification, Commission for Basic Systems, World Meteorological Organization, 32 pp. [Available online at http://www.wmo.int/pages/prog/www/CBS-Reports/documents/CG-FV_Final-Report_May2012.pdf.]

  • Charron, M., and Coauthors, 2012: The stratospheric extension of the Canadian global deterministic medium-range weather forecasting system and its impact on tropospheric forecasts. Mon. Wea. Rev., 140, 19241944.

    • Search Google Scholar
    • Export Citation
  • CMC, 2011 : Improvements to the deterministic prediction systems (Strato2A – GDPS 2.1.0), version 1.2. Canadian Meteorological Centre, 37 pp. [Available online at http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/op_systems/doc_opchanges/technote_gdps_strato2a_e_20110714.pdf.]

  • Côté, J., S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998a: The operational CMC–MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126, 13731395.

    • Search Google Scholar
    • Export Citation
  • Côté, J., J.-G. Desmarais, S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth 1998b: The operational CMC–MRB Global Environmental Multiscale (GEM) model. Part II: Results. Mon. Wea. Rev., 126, 13971418.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1991: The theory of hurricanes. Annu. Rev. Fluid Mech., 23, 179196.

  • Emanuel, K., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and D. Nolan, 2004: Tropical cyclone activity and global climate. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A.2. [Available online at https://ams.confex.com/ams/pdfpapers/75463.pdf.]

  • Gauthier, P., M. Tanguay, S. Laroche, S. Pellerin, and J. Morneau, 2007: Extension of 3DVAR to 4DVAR: Implementation of 4DVAR at the Meteorological Service of Canada. Mon. Wea. Rev., 135, 23392354.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9, 11691187.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., H. H. Hendon, and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41, 113121.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997a: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation. J. Atmos. Sol. Terr. Phys., 59, 371386.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997b: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation. J. Atmos. Sol. Terr. Phys., 59, 387400.

    • Search Google Scholar
    • Export Citation
  • Japan Meteorological Agency, cited 2011: Report presented at the 27th session of the Working Group for Numerical Experimentation (WGNE). [Available online at http://www.ral.ucar.edu/jnt/events/wgne27/index.php.]

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Knapp, K. R., and M. C. Kruk, 2010: Quantifying interagency differences in tropical cyclone best-track speed estimates. Mon. Wea. Rev., 138, 14591473.

    • Search Google Scholar
    • Export Citation
  • Landsea, C., S. Feuer, A. Hagen, D. A. Glenn, N. T. Anderson, J. Sims, R. Perez, and M. Chenoweth, 2004: The Atlantic hurricane database re-analysis project: Documentation for the 1851-1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present and Future, R. J. Murname and K.-B. Liu, Eds., Columbia University Press, 177–221.

  • Li, C., X. Jia, J. Ling, W. Zhou, and C. Zhang, 2009: Sensitivity of MJO simulations to diabatic heating profiles. Climate Dyn., 32, 167187, doi:10.1007/s00382-008-0455-x.

    • Search Google Scholar
    • Export Citation
  • Li, J., and H. W. Barker, 2005: A radiation algorithm with correlated-k distribution. Part I: Local thermal equilibrium. J. Atmos. Sci., 62, 286309.

    • Search Google Scholar
    • Export Citation
  • Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127.

    • Search Google Scholar
    • Export Citation
  • Mailhot, J., and Coauthors, 2006: The 15-km version of the Canadian regional forecast system. Atmos.–Ocean, 44, 133149.

  • McFarlane, N. A., 1987: The effect of orographically excited gravity-wave drag on the circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549.

    • Search Google Scholar
    • Export Citation
  • Pudykiewicz, J., R. Benoit, and J. Mailhot, 1992: Inclusion and verification of a predictive cloud water scheme in a regional weather prediction model. Mon. Wea. Rev., 120, 612626.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1993: On the interaction of tropical cyclone scale vortices: II. Interacting vortex patches. Quart. J. Roy. Meteor. Soc., 119, 13631397.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 13771396.

  • Rodwell, M. J., and T. N. Palmer, 2007: Using numerical weather prediction to assess climate models. Quart. J. Roy. Meteor. Soc., 133, 129146.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM Precipitation Radar. J. Atmos. Sci., 61, 13411358.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1978: A parametrization scheme for non-convective condensation including prediction of cloud-water content. Quart. J. Roy. Meteor. Soc., 104, 677690.

    • Search Google Scholar
    • Export Citation
  • WMO, 2012: Observing stations and WMO catalogue of radiosondes. World Meteorological Organization Publ. 9, 593 pp. [Available online at http://www.wmo.int/pages/prog/www/ois/volume-a/vola-home.htm.]

  • Wu, Z., 2003: A shallow CISK, deep equilibrium mechanism for the interaction between large-scale convection and large-scale circulations in the tropics. J. Atmos. Sci., 60, 377392.

    • Search Google Scholar
    • Export Citation
  • Zadra, A., M. Roch, S. Laroche, and M. Charron, 2003: The subgrid-scale orographic blocking parametrization of the GEM model. Atmos.–Ocean, 41, 155170.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 459 268 88
PDF Downloads 169 54 5