Using Variable-Resolution Meshes to Model Tropical Cyclones in the Community Atmosphere Model

Colin M. Zarzycki Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Ann Arbor, Michigan

Search for other papers by Colin M. Zarzycki in
Current site
Google Scholar
PubMed
Close
,
Christiane Jablonowski Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Ann Arbor, Michigan

Search for other papers by Christiane Jablonowski in
Current site
Google Scholar
PubMed
Close
, and
Mark A. Taylor Sandia National Laboratories, Albuquerque, New Mexico

Search for other papers by Mark A. Taylor in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A statically nested, variable-mesh option has recently been introduced into the Community Atmosphere Model’s (CAM's) Spectral Element (SE) dynamical core that has become the default in CAM version 5.3. This paper presents a series of tests of increasing complexity that highlight the use of variable-resolution grids in CAM-SE to improve tropical cyclone representation by dynamically resolving storms without requiring the computational demand of a global high-resolution grid. As a simplified initial test, a dry vortex is advected through grid transition regions in variable-resolution meshes on an irrotational planet with the CAM subgrid parameterization package turned off. Vortex structure and intensity is only affected by grid resolution and no spurious artifacts are observed. CAM-SE model simulations using an idealized tropical cyclone test case on an aquaplanet show no numerical distortion or wave reflection when the cyclone interacts with an abrupt transition region. Using the same test case, the authors demonstrate that a regionally refined mesh with significantly fewer degrees of freedom can produce the same local results as a globally uniform grid. Additionally, the authors discuss a more complex aquaplanet experiment with meridionally varying sea surface temperatures that reproduces a quasi-realistic global climate. Tropical cyclogenesis is facilitated without the need for vortex bogusing in a high-resolution patch embedded within a global grid that is otherwise too coarse to resolve realistic tropical cyclones in CAM.

Corresponding author address: Colin M. Zarzycki, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, 2455 Hayward St., Ann Arbor, MI 48109. E-mail: zarzycki@umich.edu

Abstract

A statically nested, variable-mesh option has recently been introduced into the Community Atmosphere Model’s (CAM's) Spectral Element (SE) dynamical core that has become the default in CAM version 5.3. This paper presents a series of tests of increasing complexity that highlight the use of variable-resolution grids in CAM-SE to improve tropical cyclone representation by dynamically resolving storms without requiring the computational demand of a global high-resolution grid. As a simplified initial test, a dry vortex is advected through grid transition regions in variable-resolution meshes on an irrotational planet with the CAM subgrid parameterization package turned off. Vortex structure and intensity is only affected by grid resolution and no spurious artifacts are observed. CAM-SE model simulations using an idealized tropical cyclone test case on an aquaplanet show no numerical distortion or wave reflection when the cyclone interacts with an abrupt transition region. Using the same test case, the authors demonstrate that a regionally refined mesh with significantly fewer degrees of freedom can produce the same local results as a globally uniform grid. Additionally, the authors discuss a more complex aquaplanet experiment with meridionally varying sea surface temperatures that reproduces a quasi-realistic global climate. Tropical cyclogenesis is facilitated without the need for vortex bogusing in a high-resolution patch embedded within a global grid that is otherwise too coarse to resolve realistic tropical cyclones in CAM.

Corresponding author address: Colin M. Zarzycki, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, 2455 Hayward St., Ann Arbor, MI 48109. E-mail: zarzycki@umich.edu
Save
  • Abiodun, B. J., J. M. Prusa, and W. J. Gutowski, 2008: Implementation of a non-hydrostatic, adaptive-grid dynamics core in CAM3. Part I: Comparison of dynamics cores in aqua-planet simulations. Climate Dyn., 31 (7–8), 795810.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. D., S. E. Benzley, and S. J. Owen, 2009: Automatic all quadrilateral mesh adaption through refinement and coarsening. Proceedings of the 18th International Meshing Roundtable, B. W. Clark, Ed., Springer-Verlag, 557574.

  • Arakawa, A., J.-H. Jung, and C.-M. Wu, 2011: Toward unification of the multiscale modeling of the atmosphere. Atmos. Chem. Phys., 11 (8), 37313742, doi:10.5194/acp-11-3731-2011.

    • Search Google Scholar
    • Export Citation
  • Arya, S., 2001: Introduction to Micrometeorology. International Geophysics Series, Vol. 79, Academic Press, 420 pp.

  • Baer, F., H. Wang, J. J. Tribbia, and A. Fournier, 2006: Climate modeling with spectral elements. Mon. Wea. Rev., 134, 36103624.

  • Bengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J. J. Luo, and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate? Tellus, 59A (4), 539561.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., and S.-J. Lin, 2013: Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate, 26, 380398.

    • Search Google Scholar
    • Export Citation
  • Côté, J., M. Roch, A. Staniforth, and L. Fillion, 1993: A variable-resolution semi-Lagrangian finite-element global model of the shallow-water equations. Mon. Wea. Rev., 121, 231243.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., and J. F. Geleyn, 1988: A global numerical weather prediction model with variable resolution: Application to the shallow water equations. Quart. J. Roy. Meteor. Soc., 114, 13211346.

    • Search Google Scholar
    • Export Citation
  • Dennis, J. M., and Coauthors, 2012: CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model. Int. J. High Perform. Comput. Appl., 26, 7489.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2001: Contribution of tropical cyclones to meridional heat transport by the oceans. J. Geophys. Res., 106 (D14), 14 77114 781.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2008: The hurricane–climate connection. Bull. Amer. Meteor. Soc., 89 (5), ES10ES20.

  • Fournier, A., M. A. Taylor, and J. J. Tribbia, 2004: The spectral element atmospheric model: High-resolution parallel computation and response to regional forcing. Mon. Wea. Rev., 132, 726748.

    • Search Google Scholar
    • Export Citation
  • Fox-Rabinovitz, M. S., J. Côté, B. Dugas, M. Déqué, and J. L. McGregor, 2006: Variable-resolution general circulation models: stretched-grid model intercomparison project (SGMIP). J. Geophys. Res.,111, D16104, doi:10.1029/2005JD006520.

  • Harris, L. M., and S.-J. Lin, 2013: A two-way nested global-regional dynamical core on the cubed-sphere grid. Mon. Wea. Rev., 141, 283306.

    • Search Google Scholar
    • Export Citation
  • Jablonowski, C., R. C. Oehmke, and Q. F. Stout, 2009: Block-structured adaptive meshes and reduced grids for atmospheric general circulation models. Philos. Trans. Roy. Soc. London, 367A, 44974522.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The international best track archive for climate stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, I. M. Held, and R. E. Tuleya, 2007: Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model. Bull. Amer. Meteor. Soc., 88, 1549–1565.

    • Search Google Scholar
    • Export Citation
  • Laprise, R., and Coauthors, 2008: Challenging some tenets of regional climate modelling. Meteor. Atmos. Phys., 100 (1–4), 322.

  • Levy, M., J. Overfelt, and M. A. Taylor, 2013: A variable resolution spectral element dynamical core in the Community Atmosphere Model. Tech. Note 2013-0697J, Sandia National Laboratories, 24 pp.

  • Lorant, V., and J. F. Royer, 2001: Sensitivity of equatorial convection to horizontal resolution in aquaplanet simulations with a variable-resolution GCM. Mon. Wea. Rev., 129, 27302745.

    • Search Google Scholar
    • Export Citation
  • McDonald, A., 2003: Transparent boundary conditions for the shallow-water equations: Testing in a nested environment. Mon. Wea. Rev., 131, 698705.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and B. J. Hoskins, 2000: A standard test for AGCMs including their physical parametrizations. I: The proposal. Atmos. Sci. Lett., 1 (2), 101107.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010a: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note NCAR/TN-485+STR, National Center for Atmospheric Research, Boulder, CO, 212 pp.

  • Neale, R. B., and Coauthors, 2010b: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, National Center for Atmospheric Research, Boulder, CO, 268 pp.

  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

  • Rauscher, S. A., T. D. Ringler, W. C. Skamarock, and A. A. Mirin, 2013: Exploring a global multiresolution modeling approach using aquaplanet simulations. J. Climate, 26, 24322452.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., and C. Jablonowski, 2011: An analytic vortex initialization technique for idealized tropical cyclone studies in AGCMs. Mon. Wea. Rev., 139, 689710.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., C. Jablonowski, and M. A. Taylor, 2012: Tropical cyclones in the spectral element configuration of the Community Atmosphere Model. Atmos. Sci. Lett., 13 (4), 303310.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89, 303311.

  • Ringler, T., L. Ju, and M. Gunzburger, 2008: A multiresolution method for climate system modeling: Application of spherical centroidal Voronoi tessellations. Ocean Dyn., 58, 475498.

    • Search Google Scholar
    • Export Citation
  • Ringler, T., D. Jacobsen, M. Gunzburger, L. Ju, M. Duda, and W. Skamarock, 2011: Exploring a multiresolution modeling approach within the shallow-water equations. Mon. Wea. Rev., 139, 33483368.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105.

    • Search Google Scholar
    • Export Citation
  • St-Cyr, A., C. Jablonowski, J. M. Dennis, H. M. Tufo, and S. J. Thomas, 2008: A comparison of two shallow-water models with nonconforming adaptive grids. Mon. Wea. Rev., 136, 18981922.

    • Search Google Scholar
    • Export Citation
  • Strachan, J., P. L. Vidale, K. Hodges, M. Roberts, and M.-E. Demory, 2013: Investigating global tropical cyclone activity with a hierarchy of AGCMs: The role of model resolution. J. Climate, 26, 133152.

    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., 2011: Conservation of mass and energy for the moist atmospheric primitive equations on unstructured grids. Numerical Techniques for Global Atmospheric Models, P. H. Lauritzen et al., Eds., Lecture Notes in Computational Science and Engineering, Vol. 80, Springer, 357–380.

  • Taylor, M. A., and A. Fournier, 2010: A compatible and conservative spectral element method on unstructured grids. J. Comput. Phys., 229 (17), 58795895.

    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., J. Tribbia, and M. Iskandarani, 1997: The spectral element method for the shallow water equations on the sphere. J. Comput. Phys., 130, 92108.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., 2008: A stretched icosahedral grid by a new grid transformation. J. Meteor. Soc. Japan, 86, 107119.

  • Vitart, F., J. L. Anderson, and W. F. Stern, 1997: Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations. J. Climate, 10, 745760.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and R. Avissar, 2011: A direct method for constructing refined regions in unstructured conforming triangular–hexagonal computational grids: Application to OLAM. Mon. Wea. Rev., 139, 39233937.

    • Search Google Scholar
    • Export Citation
  • Walsh, K., M. Fiorino, C. W. Landsea, and K. L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 23072314.

    • Search Google Scholar
    • Export Citation
  • Walsh, K., S. Lavender, E. Scoccimarro, and H. Murakami, 2013: Resolution dependence of tropical cyclone formation in CMIP3 and finer resolution models. Climate Dyn., 40, 585–599, doi:10.1007/s00382-012-1298-z.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 727 233 29
PDF Downloads 500 161 20