Analysis of the Thermodynamic Properties of Developing and Nondeveloping Tropical Disturbances Using a Comprehensive Dropsonde Dataset

Jonathan Zawislak Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Jonathan Zawislak in
Current site
Google Scholar
PubMed
Close
and
Edward J. Zipser Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Edward J. Zipser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A dropsonde dataset is analyzed to quantify the necessary thermodynamic conditions for tropical cyclogenesis by evaluating the properties that distinguish developing tropical disturbances from nondeveloping disturbances, and by describing the temporal evolution of the developing inner core. The dataset consists of 2204 dropsonde observations from 12 developing disturbances and 245 from four nondeveloping disturbances. These disturbances are the cases with the best pregenesis sampling from field programs between 2005 and 2010, and include those investigated by three coincident field programs during 2010: the NASA Genesis and Rapid Intensification Processes (GRIP) and NCAR/NSF Pre-Depression Investigation of Cloud Systems in the Tropics (PREDICT) experiments, as well as NOAA’s Intensity Forecast Experiment (IFEX). Composite analyses indicate clear differences between developing and nondeveloping disturbances: developing disturbances exhibit greater moisture and a higher humidity at midlevels (above 800 hPa) than nondeveloping, and while the developing inner core experiences some midlevel moistening and stabilization as genesis nears, nondeveloping disturbances become progressively drier and more convectively unstable. Developing disturbances also exhibit some important characteristics in their inner core within 2 days of genesis: the low to midtroposphere (below 500 hPa) approaches near-saturation, a mid- to upper-level warm temperature anomaly develops and progressively deepens toward the low levels, and a low-level (below 900 hPa) cool, dry anomaly develops and is removed by the day of genesis. Overall the results support one proposed pathway to tropical cyclone formation in which an initially stronger midlevel vortex, in a moist, humid environment, precedes primarily low-level intensification within a day of genesis.

Denotes Open Access content.

Corresponding author address: Jonathan Zawislak, Dept. of Atmospheric Sciences, University of Utah, 135 South 1460 East, Rm. 819, WBB, Salt Lake City, UT 84112. E-mail: jon.zawislak@utah.edu

Abstract

A dropsonde dataset is analyzed to quantify the necessary thermodynamic conditions for tropical cyclogenesis by evaluating the properties that distinguish developing tropical disturbances from nondeveloping disturbances, and by describing the temporal evolution of the developing inner core. The dataset consists of 2204 dropsonde observations from 12 developing disturbances and 245 from four nondeveloping disturbances. These disturbances are the cases with the best pregenesis sampling from field programs between 2005 and 2010, and include those investigated by three coincident field programs during 2010: the NASA Genesis and Rapid Intensification Processes (GRIP) and NCAR/NSF Pre-Depression Investigation of Cloud Systems in the Tropics (PREDICT) experiments, as well as NOAA’s Intensity Forecast Experiment (IFEX). Composite analyses indicate clear differences between developing and nondeveloping disturbances: developing disturbances exhibit greater moisture and a higher humidity at midlevels (above 800 hPa) than nondeveloping, and while the developing inner core experiences some midlevel moistening and stabilization as genesis nears, nondeveloping disturbances become progressively drier and more convectively unstable. Developing disturbances also exhibit some important characteristics in their inner core within 2 days of genesis: the low to midtroposphere (below 500 hPa) approaches near-saturation, a mid- to upper-level warm temperature anomaly develops and progressively deepens toward the low levels, and a low-level (below 900 hPa) cool, dry anomaly develops and is removed by the day of genesis. Overall the results support one proposed pathway to tropical cyclone formation in which an initially stronger midlevel vortex, in a moist, humid environment, precedes primarily low-level intensification within a day of genesis.

Denotes Open Access content.

Corresponding author address: Jonathan Zawislak, Dept. of Atmospheric Sciences, University of Utah, 135 South 1460 East, Rm. 819, WBB, Salt Lake City, UT 84112. E-mail: jon.zawislak@utah.edu
Save
  • Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 26622682.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053.

  • Braun, S. A., and Coauthors, 2013: NASA’s Genesis and Rapid Intensification Processes (GRIP) field experiment—Bringing new technologies to the hurricane intensity problem. Bull. Amer. Meteor. Soc., 94, 345363.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and D. A. Ahijevych, 2012: Mesoscale structural evolution of three tropical weather systems observed during PREDICT. J. Atmos. Sci., 69, 12841305.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., and P. A. Harr, 2008: Tropical Cyclone Structure (TCS08) field experiment: Science basis, observational platforms, and strategy. Asia-Pac. J. Atmos. Sci., 44, 209231.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part II: Mesoscale model. J. Atmos. Sci., 37, 17341762.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbance and storms. Mon. Wea. Rev., 96, 669700.

  • Gray, W. M., 1975: Tropical cyclone genesis. Department of Atmospheric Sciences, Colorado State University Paper 232, 121 pp.

  • Halverson, J., and Coauthors, 2007: NASA’s Tropical Cloud Systems and Processes experiment: Investigating tropical cyclogenesis and hurricane intensity change. Bull. Amer. Meteor. Soc., 88, 867882.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., M. S. Kalafsky, and R. L. Elsberry, 1996: Environmental conditions prior to formation of a midget tropical cyclone during TCM-93. Mon. Wea. Rev., 124, 16931710.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232.

    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and H. F. Pierce, 2002: Synoptic-scale influence of the Saharan air layer on tropical cyclogenesis over the eastern Atlantic. Mon. Wea. Rev., 130, 31003128.

    • Search Google Scholar
    • Export Citation
  • Kerns, B. K., K. G. Greene, and E. Zipser, 2008: Four years of tropical ERA-40 vorticity maxima tracks. Part I: Climatology and vertical vorticity structure. Mon. Wea. Rev., 136, 43014319.

    • Search Google Scholar
    • Export Citation
  • Kieu, C. Q., and D.-L. Zhang, 2009: Genesis of Tropical Storm Eugene (2005) from merging vortices associated with ITCZ breakdowns. Part II: Roles of vortex merger and ambient potential vorticity. J. Atmos. Sci., 66, 19801996.

    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., 2013: An investigation of composite dropsonde profiles for developing and nondeveloping tropical waves during the 2010 PREDICT field campaign. J. Atmos. Sci., 70, 542558.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., 1995: Tropical cyclone formation. Global Perspectives on Tropical Cyclones, R. L. Elsberry, Ed., World Meteorological Organization, 63–105.

  • McBride, J. L., and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 11321151.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2012: The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS08) field experiment—Part 2: Observations of the convective environment. Atmos. Chem. Phys., 12, 40014009.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., Z. Wang, and T. J. Dunkerton, 2010: Coarse, intermediate, and high resolution numerical simulations of the transition of a tropical wave critical layer to a tropical storm. Atmos. Chem. Phys., 10, 10 80310 827.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and Coauthors, 2012: The Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) Experiment: Scientific basis, new analysis tools, and some first results. Bull. Amer. Meteor. Soc., 93, 153172.

    • Search Google Scholar
    • Export Citation
  • Nolan, D., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241266.

  • Raymond, D. J., and S. L. Sessions, 2007: Evolution of convection during tropical cyclogenesis. Geophys. Res. Lett.,34, L06811, doi:10.1029/2006GL028607.

  • Raymond, D. J., and C. López Carrillo, 2011: The vorticity budget of developing Typhoon Nuri (2008). Atmos. Chem. Phys., 11, 147163.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., C. López Carrillo, and L. López Cavazos, 1998: Case-studies of developing east Pacific easterly waves. Quart. J. Roy. Meteor. Soc., 124, 20052034.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, and C. López Carrillo, 2011: Thermodynamics of tropical cyclogenesis in the northwest Pacific. J. Geophys. Res., 116, D18101, doi:10.1029/2011JD015624.

  • Reasor, P. D., M. T. Montgomery, and L. F. Bosart, 2005: Mesoscale observations of the genesis of Hurricane Dolly (1996). J. Atmos. Sci., 62, 31513171.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 13771396.

  • Rogers, R., and Coauthors, 2006: The intensity forecast experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bull. Amer. Meteor. Soc., 87, 15231537.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., and Coauthors, 2013: NOAA’s Hurricane Intensity Forecasting Experiment: A progress report. Bull. Amer. Meteor. Soc., 94, 859882.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., E. Ritchie, G. J. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125, 26432661.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., J. W. Nielsen-Gammon, and S. E. Allen, 2006: The multiple-vortex nature of tropical cyclogenesis. Mon. Wea. Rev., 134, 17961814.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2012: Observations of the convective environment in developing and non-developing tropical disturbances. Quart. J. Roy. Meteor. Soc., 138, 17211739.

    • Search Google Scholar
    • Export Citation
  • Wang, L., K.-H. Lau, Q.-H. Zhang, and C.-H. Fung, 2008: Observation of non-developing and developing disturbances over the South China Sea using SSM/I satellite. Geophys. Res. Lett., 35, L10802, doi:10.1029/2008GL033446.

  • Wang, Z., 2012: Thermodynamic aspects of tropical cyclone formation. J. Atmos. Sci., 69, 24332451.

  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2010: Genesis of pre–Hurricane Felix (2007). Part I: The role of the easterly wave critical layer. J. Atmos. Sci., 67, 17111729.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and C. Fritz, 2012: A first look at the structure of the wave pouch during the 2009 PREDICT–GRIP dry runs over the Atlantic. Mon. Wea. Rev., 140, 11441163.

    • Search Google Scholar
    • Export Citation
  • Zawislak, J., and E. J. Zipser, 2010: Observations of seven African easterly waves in the east Atlantic during 2006. J. Atmos. Sci., 67, 2643.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and L. Zhu, 2012: Roles of upper-level processes in tropical cyclogenesis. Geophys. Res. Lett., 39, L17804, doi:10.1029/2012GL053140.

  • Zipser, E. J., and Coauthors, 2009: The Saharan air layer and the fate of African easterly waves: NASA’s AMMA field study of tropical cyclogenesis. Bull. Amer. Meteor. Soc., 90, 11371156.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 590 110 20
PDF Downloads 355 81 4