Impact of ASCAT Soil Moisture Assimilation on Regional Precipitation Forecasts: A Case Study for Austria

Stefan Schneider Zentralanstalt für Meteorologie und Geodynamik, Vienna, Austria

Search for other papers by Stefan Schneider in
Current site
Google Scholar
PubMed
Close
,
Yong Wang Zentralanstalt für Meteorologie und Geodynamik, Vienna, Austria

Search for other papers by Yong Wang in
Current site
Google Scholar
PubMed
Close
,
Wolfgang Wagner Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria

Search for other papers by Wolfgang Wagner in
Current site
Google Scholar
PubMed
Close
, and
Jean-Francois Mahfouf Météo-France/CNRS, CNRM/GAME, Toulouse, France

Search for other papers by Jean-Francois Mahfouf in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, remotely sensed soil moisture data from the Advanced Scatterometer (ASCAT) on board the Meteorological Operational (MetOp) series of satellites are assimilated in the regional forecasting model, Aire Limitée Adaptation Dynamique Développement International (ALADIN-Austria), using a simplified extended Kalman filter. A pointwise bias correction method is applied to the ASCAT data as well as quality flags prepared by the data provider. The ASCAT assimilation case study is performed over central Europe during a 1-month period in July 2009. Forecasts of those assimilation experiments are compared to the control run provided by the operational ALADIN version of the Austrian Met Service, Zentralanstalt für Meteorologie und Geodynamik (ZAMG). Forecasts are furthermore verified versus in situ data. For a single-day case study the ability of the approach to improve precipitation forecast quality in the presence of high impact weather is demonstrated. Results show that 1) based on a one station in situ data evaluation, soil moisture analysis is improved, compared to the operational analysis, when ASCAT soil moisture data is assimilated; 2) pointwise bias correction of the satellite data is beneficial for forecast quality; 3) screen level parameter forecasts can be slightly improved as a result of this approach; and 4) convective precipitation forecast is improved over flatland for the investigation period while over mountainous regions the impact is neutral.

Corresponding author address: Stefan Schneider, Zentralanstalt für Meteorologie und Geodynamik, Hohe Warte 38, A-1190 Vienna, Austria. E-mail: stefan.schneider@zamg.ac.at

Abstract

In this study, remotely sensed soil moisture data from the Advanced Scatterometer (ASCAT) on board the Meteorological Operational (MetOp) series of satellites are assimilated in the regional forecasting model, Aire Limitée Adaptation Dynamique Développement International (ALADIN-Austria), using a simplified extended Kalman filter. A pointwise bias correction method is applied to the ASCAT data as well as quality flags prepared by the data provider. The ASCAT assimilation case study is performed over central Europe during a 1-month period in July 2009. Forecasts of those assimilation experiments are compared to the control run provided by the operational ALADIN version of the Austrian Met Service, Zentralanstalt für Meteorologie und Geodynamik (ZAMG). Forecasts are furthermore verified versus in situ data. For a single-day case study the ability of the approach to improve precipitation forecast quality in the presence of high impact weather is demonstrated. Results show that 1) based on a one station in situ data evaluation, soil moisture analysis is improved, compared to the operational analysis, when ASCAT soil moisture data is assimilated; 2) pointwise bias correction of the satellite data is beneficial for forecast quality; 3) screen level parameter forecasts can be slightly improved as a result of this approach; and 4) convective precipitation forecast is improved over flatland for the investigation period while over mountainous regions the impact is neutral.

Corresponding author address: Stefan Schneider, Zentralanstalt für Meteorologie und Geodynamik, Hohe Warte 38, A-1190 Vienna, Austria. E-mail: stefan.schneider@zamg.ac.at
Save
  • Albergel, C., C. Rüdiger, D. Carrer, J.-C. Calvet, N. Fritz, V. Naeimi, Z. Bartalis, and S. Hasenauer, 2009: An evaluation of ASCAT surface soil moisture products with in-situ observations in Southwestern France. Hydrol. Earth Syst. Sci., 13 (2), 115124.

    • Search Google Scholar
    • Export Citation
  • Albergel, C., P. de Rosnay, C. Gruhier, J. Muñoz-Sabater, S. Hasenauer, L. Isaksen, Y. Kerr, and W. Wagner, 2012: Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sens. Environ., 118, 215226, doi:10.1016/j.rse.2011.11.017.

    • Search Google Scholar
    • Export Citation
  • Bartalis, Z., W. Wagner, V. Naeimi, S. Hasenauer, K. Scipal, H. Bonekamp, J. Figa, and C. Anderson, 2007: Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT). Geophys. Res. Lett., 34, L20401, doi:10.1029/2007GL031088.

    • Search Google Scholar
    • Export Citation
  • Brocca, L., F. Melone, T. Moramarco, W. Wagner, and S. Hasenauer, 2010: ASCAT Soil Wetness Index validation through in-situ and modeled soil moisture data in Central Italy. Remote Sens. Environ., 114 (11), 27452755.

    • Search Google Scholar
    • Export Citation
  • Brocca, L., and Coauthors, 2011: Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study accross Europe. Remote Sens. Environ., 115 (12), 33903408, doi:10.1016/j.rse.2011.08.003.

    • Search Google Scholar
    • Export Citation
  • Brocca, L., and Coauthors, 2013: Soil moisture estimation in alpine catchments through modeling and satellite observations. Vadose Zone J., 12 (3), doi:10.2136/vzj2012.0102.

    • Search Google Scholar
    • Export Citation
  • Bubnová, R., G. Hello, P. Bénard, and J.-F. Geleyn, 1995: Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/ALADIN NWP system. Mon. Wea. Rev., 123, 515535.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., and J.-F. Geleyn, 1988: A global numerical weather prediction model with variable resolution: Application to the shallow-water equations. Quart. J. Roy. Meteor. Soc., 114 (483), 13211346, doi:10.1002/qj.49711448309.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1977: A parametrization of ground surface moisture for use in atmospheric prediction models. J. Appl. Meteor., 16, 11821185.

    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., M. Drusch, D. Vasiljevic, G. Balsamo, C. Albergel, and L. Isaksen, 2013: A simplified extended Kalman filter for the global operational soil moisture analysis at ECMWF. Quart. J. Roy. Meteor. Soc., 139, 1199–1213, doi:10.1002/qj.2023.

    • Search Google Scholar
    • Export Citation
  • Dharssi, I., K. J. Bovis, B. Macpherson, and C. P. Jones, 2011: Operational assimilation of ASCAT surface soil wetness at the Met Office. Hydrol. Earth Syst. Sci., 15, 27292746, doi:10.5194/hess-15-2729-2011.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and Coauthors, 2011: The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci., 15 (5), 16751698.

    • Search Google Scholar
    • Export Citation
  • Dotzek, N., 2001: Tornadoes in Germany. Atmos. Res., 56 (1–4), 233251, doi:10.1016/S0169-8095(00)00075-2.

  • Dotzek, N., P. Groenemeijer, B. Feuerstein, and A. M. Holzer, 2009: Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. Atmos. Res., 93, 575586.

    • Search Google Scholar
    • Export Citation
  • Draper, C. S., J.-F. Mahfouf, and J. P. Walker, 2009: An EKF assimilation of AMSR-E soil moisture into the ISBA land surface scheme. J. Geophys. Res., 114, D20104, doi:10.1029/2008JD011650.

    • Search Google Scholar
    • Export Citation
  • Draper, C. S., R. H. Reichle, G. J. M. DeLannoy, and Q. Liu, 2012: Assimilation of passive and active microwave soil moisture retrievals. Geophys. Res. Lett., 39, L04401, doi:10.1029/2011GL050655.

    • Search Google Scholar
    • Export Citation
  • Drusch, M., and P. Viterbo, 2007: Assimilation of screen-level variables in ECMWF Integrated Forecast System: A study on the impact on the forecast quality and analyzed soil moisture. Mon. Wea. Rev., 135, 300314.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., and P. Viterbo, 2006: The European summer of 2003: Sensitivity to soil water initial conditions. J. Climate, 19, 36593680.

    • Search Google Scholar
    • Export Citation
  • Figa-Saldaña, J., J. J. W. Wilson, E. Attema, R. Gelsthorpe, M. R. Drinkwater, and A. Stoffelen, 2002: The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers. Can. J. Remote Sens., 28 (3), 404412.

    • Search Google Scholar
    • Export Citation
  • Geleyn, J.-F., 1988: Interpolation of wind, temperature and humidity values from model levels to the height of measurement. Tellus, 40A, 347351.

    • Search Google Scholar
    • Export Citation
  • Gerard, L., J.-M. Piriou, R. Brozkova, and J.-F. Geleyn, 2009: Cloud and precipitation parameterization in a meso-gamma-scale operational weather prediction model. Mon. Wea. Rev., 137, 39603977.

    • Search Google Scholar
    • Export Citation
  • Haiden, T., A. Kann, C. Wittmann, G. Pistotnik, B. Bica, and C. Gruber, 2011: The Integrated Nowcasting through Comprehensive Analysis (INCA) system and its validation over the Eastern Alpine region. Wea. Forecasting, 26, 166183.

    • Search Google Scholar
    • Export Citation
  • Kaltenböck, R., G. Diendorfer, and N. Dotzek, 2009: Evaluation of thunderstorm indices from ECMWF analyses, lightning data and severe storm reports. Atmos. Res., 93, 381396.

    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., 2007: Soil moisture from space: Where are we? Hydrogeol. J., 15, 117120.

  • Kerr, Y. H., and Coauthors, 2010: The SMOS mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE, 98 (5), 666687.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305 (5687), 11381140.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., R. Mahmood, D. F. Levia, T. L. DeLiberty, S. M. Quiring, C. Houser, and F. E. Nelson, 2011: Soil moisture: A central and unifying theme in physical geography. Prog. Phys. Geogr., 35, 6586.

    • Search Google Scholar
    • Export Citation
  • LeMoigne, P., Ed., 2009: SURFEX scientific documentation. Note de Centre du Groupe de Météorologie à Moyenne Echelle, Note 87, CNRM, Météo-France, Toulouse, France, 211 pp.

  • Mahfouf, J.-F., 2010: Assimilation of satellite-derived soil moisture from ASCAT in a limited-area NWP model. Quart. J. Roy. Meteor. Soc., 136, 784798.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., K. Bergaoui, C. Draper, C. Bouyssel, F. Taillefer, and L. Taseva, 2009: A comparison of two off-line soil analysis schemes for assimilation of screen-level observations. J. Geophys. Res., 114, D08105, doi:10.1029/2008JD011077.

    • Search Google Scholar
    • Export Citation
  • Masson, V., and Y. Seity, 2009: Including atmospheric layers in vegetation and urban offline surface schemes. J. Appl. Meteor. Climatol., 48, 13771397.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and J.-F. Mahfouf, 1996: The ISBA land surface parameterisation scheme. Global Planet. Change, 13, 145159.

  • Parrens, M., E. Zakharova, S. Lafont, J.-C. Calvet, W. Kerr, W. Wagner, and J.-P. Wigneron, 2012: Comparing soil moisture retrievals from SMOS and ASCAT over France. Hydrol. Earth Syst. Sci., 16, 423440.

    • Search Google Scholar
    • Export Citation
  • Pistotnik, G., 2009: Meteorologische Analyse der großflächigen Hagelunwetter vom 23. Juli 2009 (Meteorological analysis of the widespread hailstorm on July 23rd, 2009). Zentralanstalt für Meteorologie und Geodynamik, 18 pp. [Available online at http://www.zamg.ac.at/docs/aktuell/Unwetter_23ter_Juli_2009.pdf.]

  • Reichle, R. H., and R. D. Koster, 2004: Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett.,31, L19501, doi:10:1029/2004GL020938.

  • Reichle, R. H., R. D. Koster, J. Dong, and A. A. Berg, 2004: Global soil moisture from satellite observations, land surface models, and ground data: Implications for data assimilation. J. Hydrometeor., 5, 430442.

    • Search Google Scholar
    • Export Citation
  • Schär, C., D. Lüthi, U. Beyerle, and E. Heide, 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722741.

    • Search Google Scholar
    • Export Citation
  • Scipal, K., 2005: Definition of quality flags. ASCAT Soil Moisture Report Series, Rep. 7, Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, Vienna, Austria, 25 pp.

  • Scipal, K., M. Drusch, and W. Wagner, 2008: Assimilation of an ERS scatterometer derived soil moisture index in the ECMWF numerical weather prediction system. Adv. Water Resour., 31, 11011112.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture-climate interactions in a changing climate—A review. Earth Sci. Rev., 99 (3–4), 125161.

    • Search Google Scholar
    • Export Citation
  • Seuffert, G., P. Gross, and C. Simmer, 2002: The influence of hydrologic modeling on the predicted local weather: Two-way coupling of a mesoscale weather prediction model and a land surface hydrologic model. J. Hydrometeor., 3, 505523.

    • Search Google Scholar
    • Export Citation
  • Shepard, D., 1968: A two-dimensional interpolation function for irregularly spaced data. Proc. 23rd ACM National Conf., Princeton, NJ, Brandon/Systems Press, 517524.

  • Sinclair, S., and G. G. S. Pegram, 2010: A comparison of ASCAT and modelled soil moisture over South Africa, using TOPKAPI in land surface mode. Hydrol. Earth Syst. Sci., 14 (4), 613626.

    • Search Google Scholar
    • Export Citation
  • Wagner, W., G. Lemoine, M. Borgeaud, and H. Rott, 1999a: A study of vegetation cover effects on ERS scatterometer data. IEEE Trans. Geosci. Remote Sens., 37 (2), 938948.

    • Search Google Scholar
    • Export Citation
  • Wagner, W., G. Lemoine, and H. Rott, 1999b: A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ., 70, 191207.

    • Search Google Scholar
    • Export Citation
  • Wagner, W., G. Blöschl, P. Pampaloni, J.-C. Calvet, B. Bizzarri, J.-P. Wigneron, and Y. Kerr, 2007: Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Nord. Hydrol., 38, 120.

    • Search Google Scholar
    • Export Citation
  • Wagner, W., Z. Bartalis, V. Naeimi, S.-E. Park, J. Figa-Saldana, and H. Bonekamp, 2010: Status of the METOP ASCAT soil moisture product. Proc. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS'2010), Honolulu, HI, IGARSS, 276279.

  • Wang, Y., T. Haiden, and A. Kann, 2006: The operational limited-area modelling system at ZAMG: ALADIN-Austria. Öster. Beitr. Meteor. Geophys.,37, 1016–6254.

  • Wang, Y., and Coauthors, 2011: The Central European limited-area ensemble forecasting system: ALADIN-LAEF. Quart. J. Roy. Meteor. Soc., 137, 483502, doi:10.1002/qj.751.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., M. Paulat, M. Hagen, and C. Frei, 2008: SAL—A novel quality measure for the verification of quantitative precipitation forecasts. Mon. Wea. Rev., 136, 44704487.

    • Search Google Scholar
    • Export Citation
  • Western, A. W., R. B. Grayson, G. Blöschl, G. R. Willgoose, and T. A. McMahon, 1999: Observed spatial organization of soil moisture and its relation to terrain indices. Water Resour. Res., 35 (3), 797810, doi:10.1029/1998WR900065.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. J. W., and Coauthors, 2010: Radiometric calibration of the Advanced Wind Scatterometer Radar ASCAT carried on-board the METOP-A satellite. IEEE Trans. Geosci. Remote Sens., 48 (8), 32363255.

    • Search Google Scholar
    • Export Citation
  • Wittmann, C., T. Haiden, and A. Kann, 2010: Evaluating multi-scale precipitation forecasts using high resolution analysis. Adv. Sci. Res., 4, 8998, doi:10.5194/asr-4-89-2010.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2008: Research Campaign: The Convective and Orographically Induced Precipitation Study—A research and development project of the World Weather Research Program for improving quantitative precipitation forecasting in low-mountain regions. Bull. Amer. Meteor. Soc., 89, 14771486.

    • Search Google Scholar
    • Export Citation
  • Zhao, D., B. Su, and M. Zhao, 2006: Soil moisture retrieval from satellite images and its application to heavy rainfall simulation in eastern China. Adv. Atmos. Sci., 23 (2), 299316.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2313 1060 89
PDF Downloads 288 67 11