Revisiting an Old Concept: The Gradient Wind*

Keith F. Brill Weather Prediction Center, National Centers for Environmental Prediction, College Park, Maryland

Search for other papers by Keith F. Brill in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The gradient wind is defined as a horizontal wind having the same direction as the geostrophic wind but with a magnitude consistent with a balance of three forces: the pressure gradient force, the Coriolis force, and the centrifugal force arising from the curvature of a parcel trajectory. This definition is not sufficient to establish a single way of computing the gradient wind. Different results arise depending upon what is taken to be the parcel trajectory and its curvature. To clarify these distinctions, contour and natural gradient winds are defined and subdivided into steady and nonsteady cases. Contour gradient winds are based only on the geostrophic streamfunction. Natural gradient winds are obtained using the actual wind. Even in cases for which the wind field is available along with the geostrophic streamfunction, it may be useful to obtain the gradient wind for comparison to the existing analyzed or forecast wind or as a force-balanced reference state. It is shown that the nonanomalous (normal) solution in the case of nonsteady natural gradient wind serves as an upper bound for the actual wind speed. Otherwise, supergradient wind speeds are possible, meaning that a contour gradient wind or the steady natural gradient wind used as an approximation for an actual wind may not be capable of representing the full range of actual wind magnitude.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-13-00088.s1.

Corresponding author address: Keith F. Brill, NOAA/NWS/NCEP, NCWCP (W/NP32), Rm. 4630, 5830 University Research Ct., College Park, MD 20740-3818. E-mail: keith.brill@noaa.gov

Abstract

The gradient wind is defined as a horizontal wind having the same direction as the geostrophic wind but with a magnitude consistent with a balance of three forces: the pressure gradient force, the Coriolis force, and the centrifugal force arising from the curvature of a parcel trajectory. This definition is not sufficient to establish a single way of computing the gradient wind. Different results arise depending upon what is taken to be the parcel trajectory and its curvature. To clarify these distinctions, contour and natural gradient winds are defined and subdivided into steady and nonsteady cases. Contour gradient winds are based only on the geostrophic streamfunction. Natural gradient winds are obtained using the actual wind. Even in cases for which the wind field is available along with the geostrophic streamfunction, it may be useful to obtain the gradient wind for comparison to the existing analyzed or forecast wind or as a force-balanced reference state. It is shown that the nonanomalous (normal) solution in the case of nonsteady natural gradient wind serves as an upper bound for the actual wind speed. Otherwise, supergradient wind speeds are possible, meaning that a contour gradient wind or the steady natural gradient wind used as an approximation for an actual wind may not be capable of representing the full range of actual wind magnitude.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-13-00088.s1.

Corresponding author address: Keith F. Brill, NOAA/NWS/NCEP, NCWCP (W/NP32), Rm. 4630, 5830 University Research Ct., College Park, MD 20740-3818. E-mail: keith.brill@noaa.gov

Supplementary Materials

    • Supplemental Materials (Zip 5.43 KB)
Save
  • Afanasyev , Y. D. , P. B. Rhines , and E. G. Lindahl , 2008 : Emission of inertial waves by baroclinically unstable flows: Laboratory experiments with altimetric imaging velocimetry . J. Atmos. Sci. , 65 , 250 262 , doi:10.1175/2007JAS2336.1 .

    • Search Google Scholar
    • Export Citation
  • Bryan , G. H. , and R. Rotunno , 2009 : Evaluation of an analytical model for the maximum intensity of tropical cyclones . J. Atmos. Sci. , 66 , 3042 3060 , doi:10.1175/2009JAS3038.1 .

    • Search Google Scholar
    • Export Citation
  • Carlson , T. N. , 1980 : Airflow through midlatitude cyclones . Mon. Wea. Rev. , 108 , 1498 1509 , doi:10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2 .

    • Search Google Scholar
    • Export Citation
  • Charney , J. G. , and A. Eliassen , 1964 : On the growth of the hurricane depression . J. Atmos. Sci. , 21 , 68 75 , doi:10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2 .

    • Search Google Scholar
    • Export Citation
  • desJardins , M. L. , K. F. Brill , and S. S. Schotz , 1991 : Use of GEMPAK on UNIX workstations. Preprints, Seventh Int. Conf. on Interactive, Information and Processing Systems for Meteorology, Oceanography, and Hydrology, New Orleans, LA, Amer. Meteor. Soc., 449 453 .

  • Dutton , J. A. , 1986 : The Ceaseless Wind.Dover Publications, Inc., 617 pp.

  • Emanuel , K. A. , 1986 : An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance . J. Atmos. Sci. , 43 , 585 605 , doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2 .

    • Search Google Scholar
    • Export Citation
  • Forbes , C. , R. A. Luettich , C. A. Mattocks , and J. J. Westerink , 2010 : A retrospective evaluation of the storm surge produced by Hurricane Gustav (2008): Forecast and hindcast results . Wea. Forecasting , 25 , 1577 1602 , doi:10.1175/2010WAF2222416.1 .

    • Search Google Scholar
    • Export Citation
  • Frisius , T. , D. Schönemann , and J. Vigh , 2013 : The impact of gradient wind imbalance on potential intensity of tropical cyclones in an unbalanced slab boundary layer model. J. Atmos. Sci.,70, 1874–1890, doi:10.1175/JAS-D-12-0160.1.

  • Fultz , D. , 1991 : Quantitative nondimensional properties of the gradient wind . J. Atmos. Sci. , 48 , 869 875 , doi:10.1175/1520-0469(1991)048<0869:QNPOTG>2.0.CO;2 .

    • Search Google Scholar
    • Export Citation
  • Gray , W. M. , and D. J. Shea , 1973 : The hurricane’s inner core region. II. Thermal stability and dynamic characteristics . J. Atmos. Sci. , 30 , 1565 1576 , doi:10.1175/1520-0469(1973)030<1565:THICRI>2.0.CO;2 .

    • Search Google Scholar
    • Export Citation
  • Haltiner , G. J. , and F. L. Martin , 1957 : Dynamical and Physical Meteorology. McGraw-Hill Book Co., Inc., 470 pp.

  • Hodyss , D. , and D. S. Nolan , 2007 : Linear anelastic equations for atmospheric vortices . J. Atmos. Sci. , 64 , 2947 2959 , doi:10.1175/JAS3991.1 .

    • Search Google Scholar
    • Export Citation
  • Holton , J. R. , 2004 : An Introduction to Dynamic Meteorology.4th ed. Elsevier Academic Press, 535 pp.

  • Houze , R. A. , 2010 : Clouds in tropical cyclones . Mon. Wea. Rev. , 138 , 293 344 , doi:10.1175/2009MWR2989.1.

  • Kwon , I.-H. , and H.-B. Cheong , 2010 : Tropical cyclone initialization with a spherical high-order filter and idealized three-dimensional bogus vortex . Mon. Wea. Rev. , 138 , 1344 1367 , doi:10.1175/2009MWR2943.1 .

    • Search Google Scholar
    • Export Citation
  • Marks , F. D. , P. G. Black , M. T. Montgomery , and R. W. Burpee , 2008 : Structure of the eye and eyewall of Hurricane Hugo (1989) . Mon. Wea. Rev. , 136 , 1237 1259 , doi:10.1175/2007MWR2073.1 .

    • Search Google Scholar
    • Export Citation
  • Mogil , H. M. , and R. L. Holle , 1972 : Anomalous gradient winds: Existence and implications . Mon. Wea. Rev. , 100 , 709 716 , doi:10.1175/1520-0493(1972)100<0709:AGWEAI>2.3.CO;2 .

    • Search Google Scholar
    • Export Citation
  • Nakanishi , M. , and H. Niino , 2012 : Large-eddy simulation of roll vortices in a hurricane boundary layer . J. Atmos. Sci. , 69 , 3558 3575 , doi:10.1175/JAS-D-11-0237.1 .

    • Search Google Scholar
    • Export Citation
  • Reed , K. A. , and C. Jablonowski , 2011 : An analytic vortex initialization technique for idealized tropical cyclone studies in AGCMs . Mon. Wea. Rev. , 139 , 689 710 , doi:10.1175/2010MWR3488.1 .

    • Search Google Scholar
    • Export Citation
  • Rotunno , R. , and G. H. Bryan , 2012 : Effects of parameterized diffusion on simulated hurricanes . J. Atmos. Sci. , 69 , 2284 2299 , doi:10.1175/JAS-D-11-0204.1 .

    • Search Google Scholar
    • Export Citation
  • Schwendike , J. , and J. D. Kepert , 2008 : The boundary layer winds in Hurricanes Danielle (1998) and Isabel (2003) . Mon. Wea. Rev. , 136 , 3168 3192 , doi:10.1175/2007MWR2296.1 .

    • Search Google Scholar
    • Export Citation
  • Uccellini , L. W. , R. A. Petersen , K. F. Brill , P. J. Kocin , and J. J. Tuccillo , 1987 : Synergistic interactions between and upper-level jet streak and diabatic processes that influence the development of a low-level jet and a secondary coastal cyclone . Mon. Wea. Rev. , 115 , 2227 2261 , doi:10.1175/1520-0493(1987)115<2227:SIBAUL>2.0.CO;2 .

    • Search Google Scholar
    • Export Citation
  • Vickery , P. J. , D. Wadhera , M. D. Powell , and Y. Chen , 2009 : A hurricane boundary layer and wind field model for use in engineering applications . J. Appl. Meteor. Climatol. , 48 , 381 405 , doi:10.1175/2008JAMC1841.1 .

    • Search Google Scholar
    • Export Citation
  • Whitaker , J. S. , L. W. Uccellini , and K. F. Brill , 1988 : A model-based diagnostic study of the rapid development phase of the Presidents’ Day cyclone . Mon. Wea. Rev. , 116 , 2337 2365 , doi:10.1175/1520-0493(1988)116<2337:AMBDSO>2.0.CO;2 .

    • Search Google Scholar
    • Export Citation
  • Willoughby , H. E. , 2011 : The golden radius in balanced atmospheric flows . Mon. Wea. Rev. , 139 , 1164 1168 , doi:10.1175/2010MWR3579.1 .

    • Search Google Scholar
    • Export Citation
  • Wood , V. T. , L. W. White , H. E. Willoughby , and D. P. Jorgensen , 2013 : A new parametric tropical cyclone tangential wind profile model. Mon. Wea. Rev.,141, 1884–1909, doi:10.1175/MWR-D-12-00115.1.

All Time Past Year Past 30 Days
Abstract Views 4 0 0
Full Text Views 2321 366 63
PDF Downloads 1800 263 34