Errors in Ensemble Kalman Smoother Estimates of Cloud Microphysical Parameters

Derek J. Posselt University of Michigan, Ann Arbor, Ann Arbor, Michigan

Search for other papers by Derek J. Posselt in
Current site
Google Scholar
PubMed
Close
,
Daniel Hodyss Naval Research Laboratory, Monterey, California

Search for other papers by Daniel Hodyss in
Current site
Google Scholar
PubMed
Close
, and
Craig H. Bishop Naval Research Laboratory, Monterey, California

Search for other papers by Craig H. Bishop in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

If forecast or observation error distributions are non-Gaussian, the true posterior mean and covariance depends on the distribution of observation errors and the observed values. The posterior distribution of analysis errors obtained from ensemble Kalman filters and smoothers is independent of observed values. Hence, the error in ensemble Kalman smoother (EnKS) state estimates is closely linked to the sensitivity of the true posterior to observed values. Here a Markov chain Monte Carlo (MCMC) algorithm is used to document the dependence of the errors in EnKS-based estimates of cloud microphysical parameters on observed values. It is shown that EnKS analysis distributions are grossly inaccurate for nonnegative microphysical parameters when parameter values are close to zero. Furthermore, numerical analysis is presented that shows that, by design, the posterior distributions given by EnKS and even nonlinear extensions of these smoothers approximate the average of all possible posterior analysis distributions associated with all possible observations given the prior. Multiple runs of the MCMC are made to approximate this distribution. This empirically derived average of Bayesian posterior analysis errors is shown to be qualitatively similar to the EnKS posterior. In this way, it is demonstrated that, in the presence of nonlinearity, EnKS algorithms do not estimate the true posterior error distribution given the specific values of the observations. Instead, they produce an error distribution that is consistent with an average of the true posterior variance, weighted by the probability of obtaining each possible observation. This seemingly subtle distinction gives rise to fundamental differences between the approximate EnKS posterior and the true Bayesian posterior distribution.

Corresponding author address: Derek J. Posselt, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109-2143. E-mail: dposselt@umich.edu

Abstract

If forecast or observation error distributions are non-Gaussian, the true posterior mean and covariance depends on the distribution of observation errors and the observed values. The posterior distribution of analysis errors obtained from ensemble Kalman filters and smoothers is independent of observed values. Hence, the error in ensemble Kalman smoother (EnKS) state estimates is closely linked to the sensitivity of the true posterior to observed values. Here a Markov chain Monte Carlo (MCMC) algorithm is used to document the dependence of the errors in EnKS-based estimates of cloud microphysical parameters on observed values. It is shown that EnKS analysis distributions are grossly inaccurate for nonnegative microphysical parameters when parameter values are close to zero. Furthermore, numerical analysis is presented that shows that, by design, the posterior distributions given by EnKS and even nonlinear extensions of these smoothers approximate the average of all possible posterior analysis distributions associated with all possible observations given the prior. Multiple runs of the MCMC are made to approximate this distribution. This empirically derived average of Bayesian posterior analysis errors is shown to be qualitatively similar to the EnKS posterior. In this way, it is demonstrated that, in the presence of nonlinearity, EnKS algorithms do not estimate the true posterior error distribution given the specific values of the observations. Instead, they produce an error distribution that is consistent with an average of the true posterior variance, weighted by the probability of obtaining each possible observation. This seemingly subtle distinction gives rise to fundamental differences between the approximate EnKS posterior and the true Bayesian posterior distribution.

Corresponding author address: Derek J. Posselt, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109-2143. E-mail: dposselt@umich.edu
Save
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903.

  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436.

    • Search Google Scholar
    • Export Citation
  • Brooks, S., A. Gelman, G. Jones, and X. L. Meng, Eds., 2011: Handbook of Markov Chain Monte Carlo. Chapman and Hall/CRC, 619 pp.

  • Cohn, S. E., 1997: An introduction to estimation theory. J. Meteor. Soc. Japan, 75, 257288.

  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10 14310 162.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2009: Data Assimilation: The Ensemble Kalman Filter. 2nd ed. Springer, 307 pp.

  • Gelman, A., G. O. Roberts, and W. R. Gilks, 1996: Efficient Metropolis jumping rules. Bayesian Statistics V, J. M. Bernardo et al., Eds., Oxford University Press, 599–608.

  • Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin, 2004: Bayesian Data Analysis. 2nd ed. Chapman and Hall/CRC, 696 pp.

  • Ghil, M., and P. Malanotte-Rizzoli, 1991: Data assimilation in meteorology and oceanography. Advances in Geophysics, Vol. 33, Academic Press, 141266.

    • Search Google Scholar
    • Export Citation
  • Haario, H., E. Saksman, and J. Tamminen, 1999: Adaptive proposal distribution for random walk Metropolis algorithm. Comput. Stat., 14, 375395.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Smith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491.

    • Search Google Scholar
    • Export Citation
  • Hodyss, D., 2011: Ensemble state estimation for nonlinear systems using polynomial expansions in the innovation. Mon. Wea. Rev., 139, 35713588.

    • Search Google Scholar
    • Export Citation
  • Hodyss, D., 2012: Accounting for skewness in ensemble data assimilation. Mon. Wea. Rev., 140, 23462358.

  • Hodyss, D., and W. F. Campbell, 2013: Square root and perturbed observation ensemble generation techniques in Kalman and quadratic ensemble filtering algorithms. Mon. Wea. Rev., 141, 25612573.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Jazwinski, H., 1970: Stochastic Processes and Filtering Theory. Vol. 64, Mathematics in Science and Engineering, Academic Press, 376 pp.

  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems, transactions of the ASME. J. Basic Eng., 82, 3545.

  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press, 341 pp.

  • L’Ecuyer, T. S., and G. L. Stephens, 2002: An estimation-based precipitation retrieval algorithm for attenuating radars. J. Appl. Meteor., 41, 272285.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and G. L. Stephens, 2003: The tropical oceanic energy budget from the TRMM perspective. Part I: Algorithm and uncertainties. J. Climate, 16, 19671985.

    • Search Google Scholar
    • Export Citation
  • Lang, S., W.-K. Tao, R. Cifelli, W. Olson, J. Halverson, S. Rutledge, and J. Simpson, 2007: Improving simulations of convective systems from TRMM LBA: Easterly and westerly regimes. J. Atmos. Sci., 64, 11411164.

    • Search Google Scholar
    • Export Citation
  • Lewis, J., S. Lakshmivarahan, and S. Dhall, 2006 : Dynamic Data Assimilation: A Least Squares Problem. Cambridge University Press, 680 pp.

  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197.

  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1992: Organized convective systems: Archetypal dynamical models, mass and momentum flux theory, and parameterization. Quart. J. Roy. Meteor. Soc., 118, 819850.

    • Search Google Scholar
    • Export Citation
  • Mosegaard, K., and A. Tarantola, 2002: Probabilistic approach to inverse problems. International Handbook of Earthquake & Engineering Seismology (Part 2), W. H. K. Lee et al., Eds., Academic Press, 237–265.

  • Posselt, D. J., 2013: Markov chain Monte Carlo methods: Theory and applications. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, 2nd ed. S. K. Park and L. Xu, Eds., Springer, 59–87.

  • Posselt, D. J., and T. Vukicevic, 2010: Robust characterization of model physics uncertainty for simulations of deep moist convection. Mon. Wea. Rev., 138, 15131535.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., and C. H. Bishop, 2012: Nonlinear parameter estimation: Comparison of an ensemble Kalman smoother with a Markov chain Monte Carlo algorithm. Mon. Wea. Rev., 140, 19571974.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., T. S. L’Ecuyer, and G. L. Stephens, 2008: Exploring the error characteristics of thin ice cloud property retrievals using a Markov chain Monte Carlo algorithm. J. Geophys. Res., 113, D24206, doi:10.1029/2008JD010832.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding, Theory and Practice. World Scientific, 240 pp.

  • Roy, S. S., R. K. Datta, R. C. Bhatia, and A. K. Sharma, 2005: Drop size distributions of tropical rain over south India. Geofizika, 22, 105130.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part XII: A diagnostic modeling study of precipitation development in narrow cold frontal rainbands. J. Atmos. Sci., 41, 29492972.

    • Search Google Scholar
    • Export Citation
  • Tamminen, J., and E. Kyrölä, 2001: Bayesian solution for nonlinear and non-Gaussian inverse problems by Markov chain Monte Carlo method. J. Geophys. Res., 106 (D13), 14 37714 390.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and J. Simpson, 1993: Goddard Cumulus Ensemble Model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4, 3572.

  • Tao, W.-K., and Coauthors, 2003: Microphysics, radiation, and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82, 97137.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2014: The Goddard Cumulus Ensemble (GCE) model: Improvements and applications for studying precipitation processes. Atmos. Res., in press.

    • Search Google Scholar
    • Export Citation
  • Tarantola, A., 2005: Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, 342 pp.

  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355371.

    • Search Google Scholar
    • Export Citation
  • van Lier-Walqui, M., T. Vukicevic, and D. J. Posselt, 2012: Quantification of cloud microphysical parameterization uncertainty using radar reflectivity. Mon. Wea. Rev., 140, 34423466.

    • Search Google Scholar
    • Export Citation
  • van Lier-Walqui, M., T. Vukicevic, and D. J. Posselt, 2014: Linearization of microphysical parameterization uncertainty using multiplicative process perturbation parameters. Mon. Wea. Rev.,142, 401–413.

    • Search Google Scholar
    • Export Citation
  • Vukicevic, T., and D. J. Posselt, 2008: Analysis of the impact of model nonlinearities in inverse problem solving. J. Atmos. Sci., 65, 28032823.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1685 1518 45
PDF Downloads 184 51 14