Calibration of Limited-Area Ensemble Precipitation Forecasts for Hydrological Predictions

Tommaso Diomede HydroMeteorological and Climate Service of the Emilia-Romagna Regional Agency for Environmental Protection, Bologna, Italy

Search for other papers by Tommaso Diomede in
Current site
Google Scholar
PubMed
Close
,
Chiara Marsigli HydroMeteorological and Climate Service of the Emilia-Romagna Regional Agency for Environmental Protection, Bologna, Italy

Search for other papers by Chiara Marsigli in
Current site
Google Scholar
PubMed
Close
,
Andrea Montani HydroMeteorological and Climate Service of the Emilia-Romagna Regional Agency for Environmental Protection, Bologna, Italy

Search for other papers by Andrea Montani in
Current site
Google Scholar
PubMed
Close
,
Fabrizio Nerozzi HydroMeteorological and Climate Service of the Emilia-Romagna Regional Agency for Environmental Protection, Bologna, Italy

Search for other papers by Fabrizio Nerozzi in
Current site
Google Scholar
PubMed
Close
, and
Tiziana Paccagnella HydroMeteorological and Climate Service of the Emilia-Romagna Regional Agency for Environmental Protection, Bologna, Italy

Search for other papers by Tiziana Paccagnella in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The main objective of this study is to investigate the impact of calibration for limited-area ensemble precipitation forecasts, to be used for driving discharge predictions up to 5 days in advance. A reforecast dataset, which spans 30 years, based on the Consortium for Small Scale Modeling Limited-Area Ensemble Prediction System (COSMO-LEPS) was used for testing the calibration strategy. Three calibration techniques were applied: quantile-to-quantile mapping, linear regression, and analogs. The performance of these methodologies was evaluated in terms of statistical scores for the precipitation forecasts operationally provided by COSMO-LEPS in the years 2003–07 over Germany, Switzerland, and the Emilia-Romagna region (northern Italy). The calibration provided a beneficial impact for the ensemble forecast over Switzerland and Germany; whereas, it resulted as less effective for Emilia-Romagna. The analog-based method seemed to be preferred because of its capability of correct position errors and spread deficiencies. A suitable spatial domain for the analog search can help to handle model spatial errors as systematic errors. However, the performance of the analog-based method may degrade in cases where a limited training dataset is available. The quantile-to-quantile mapping and linear regression methods were less effective, mainly because the forecast–analysis relation was not so strong for the available training dataset. The verification of the calibration process was then performed by coupling ensemble precipitation forecasts with a distributed rainfall–runoff model. This test was carried out for a medium-sized catchment located in Emilia-Romagna, showing a beneficial impact of the analog-based method on the reduction of missed events for discharge predictions.

Corresponding author address: Tommaso Diomede, ARPA-SIMC, HydroMeteorological and Climate Service of the Emilia-Romagna Regional Agency for Environmental Protection, 6 Viale Silvani, Bologna 40122, Italy. E-mail: tdiomede@arpa.emr.it

Abstract

The main objective of this study is to investigate the impact of calibration for limited-area ensemble precipitation forecasts, to be used for driving discharge predictions up to 5 days in advance. A reforecast dataset, which spans 30 years, based on the Consortium for Small Scale Modeling Limited-Area Ensemble Prediction System (COSMO-LEPS) was used for testing the calibration strategy. Three calibration techniques were applied: quantile-to-quantile mapping, linear regression, and analogs. The performance of these methodologies was evaluated in terms of statistical scores for the precipitation forecasts operationally provided by COSMO-LEPS in the years 2003–07 over Germany, Switzerland, and the Emilia-Romagna region (northern Italy). The calibration provided a beneficial impact for the ensemble forecast over Switzerland and Germany; whereas, it resulted as less effective for Emilia-Romagna. The analog-based method seemed to be preferred because of its capability of correct position errors and spread deficiencies. A suitable spatial domain for the analog search can help to handle model spatial errors as systematic errors. However, the performance of the analog-based method may degrade in cases where a limited training dataset is available. The quantile-to-quantile mapping and linear regression methods were less effective, mainly because the forecast–analysis relation was not so strong for the available training dataset. The verification of the calibration process was then performed by coupling ensemble precipitation forecasts with a distributed rainfall–runoff model. This test was carried out for a medium-sized catchment located in Emilia-Romagna, showing a beneficial impact of the analog-based method on the reduction of missed events for discharge predictions.

Corresponding author address: Tommaso Diomede, ARPA-SIMC, HydroMeteorological and Climate Service of the Emilia-Romagna Regional Agency for Environmental Protection, 6 Viale Silvani, Bologna 40122, Italy. E-mail: tdiomede@arpa.emr.it
Save
  • Addor, N., S. Jaun, F. Fundel, and M. Zappa, 2011: An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): Skill, case studies and scenarios. Hydrol. Earth Syst. Sci., 15, 23272347, doi:10.5194/hess-15-2327-2011.

    • Search Google Scholar
    • Export Citation
  • Atger, F., 2003: Spatial and interannual variability of the reliability of ensemble-based probabilistic forecasts: Consequences for calibration. Mon. Wea. Rev., 131, 15091523, doi:10.1175/1520-0493(2003)131<1509:SAIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bentzien, S., and P. Friederichs, 2012: Generating and calibrating probabilistic quantitative precipitation forecasts from the high-resolution NWP model COSMO-DE. Wea. Forecasting, 27, 9881002, doi:10.1175/WAF-D-11-00101.1.

    • Search Google Scholar
    • Export Citation
  • Bremnes, J. B., 2007: Improved calibration of precipitation forecasts using ensemble techniques. Part 2: Statistical calibration methods. Meteorology Rep. 04/2007, Norwegian Meteorological Institute, 38 pp. [Available online at http://met.no/Forskning/Publikasjoner/Publikasjoner_1995-2011/Publikasjoner_2007/filestore/report04_2007.pdf.]

  • Bremnes, J. B., 2008: Improved calibration of precipitation forecasts using ensemble techniques. Part 4: On the use of reforecasts in statistical calibration. Meteorology Rep. 02/2008, Norwegian Meteorological Institute, 13 pp. [Available online at http://met.no/Forskning/Publikasjoner/Publikasjoner_1995_-_2012/Publikasjoner_2008/filestore/03_2008.pdf.]

  • Delle Monache, L., T. Nipen, Y. Liu, G. Roux, and R. Stull, 2011: Kalman filter and analog schemes to postprocess numerical weather predictions. Mon. Wea. Rev., 139, 35543570, doi:10.1175/2011MWR3653.1.

    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., F. Eckel, D. Rife, B. Nagarajan, and K. Searight, 2013: Probabilistic weather prediction with an analog ensemble. Mon. Wea. Rev., 141, 34983516, doi:10.1175/MWR-D-12-00281.1.

    • Search Google Scholar
    • Export Citation
  • Dietrich, J., S. Trepte, Y. Wang, A. H. Schumann, F. Voß, F. B. Hesser, and M. Denhard, 2008: Combination of different types of ensembles for the adaptive simulation of probabilistic flood forecasts: Hindcasts for the Mulde 2002 extreme event. Nonlinear Processes Geophys., 15, 275286, doi:10.5194/npg-15-275-2008.

    • Search Google Scholar
    • Export Citation
  • Diomede, T., C. Marsigli, F. Nerozzi, T. Paccagnella, and A. Montani, 2006: Quantifying the discharge forecast uncertainty by different approaches to probabilistic quantitative precipitation forecast. Adv. Geosci.,7,189191, doi:10.5194/adgeo-7-189-2006.

  • Diomede, T., F. Nerozzi, T. Paccagnella, and E. Todini, 2008: The use of meteorological analogues to account for LAM QPF uncertainty. Hydrol. Earth Syst. Sci., 12, 141157, doi:10.5194/hess-12-141-2008.

    • Search Google Scholar
    • Export Citation
  • Frei, C., and C. Schär, 1998: Aprecipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol., 18, 873900, doi:10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9.

    • Search Google Scholar
    • Export Citation
  • Frei, C., R. Schöll, S. Fukutome, J. Schmidli, and P. L. Vidale, 2006: Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models. J. Geophys. Res., 111, D06105, doi:10.1029/2005JD005965.

    • Search Google Scholar
    • Export Citation
  • Fundel, F., A. Walser, M. A. Liniger, C. Frei, and C. Appenzeller, 2010: Calibrated precipitation forecasts for a limited area ensemble forecast system using reforecasts. Mon. Wea. Rev., 138, 176189, doi:10.1175/2009MWR2977.1.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., and A. E. Raftery, 2005: Weather forecasting with ensemble methods. Science, 310, 248249, doi:10.1126/science.1115255.

  • Gneiting, T., A. E. Raftery, A. H. Westveld III, and T. Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 10981118, doi:10.1175/MWR2904.1.

    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., T. M. Hamill, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part I: 2-meter temperature. Mon. Wea. Rev., 136, 26082619, doi:10.1175/2007MWR2410.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167, doi:10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and S. J. Colucci, 1998: Evaluation of Eta–RSM ensemble probabilistic precipitation forecasts. Mon. Wea. Rev., 126, 711724, doi:10.1175/1520-0493(1998)126<0711:EOEREP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. Juras, 2006: Measuring forecast skill: Is it real skill or is it the varying climatology? Quart. J. Roy. Meteor. Soc., 132, 29052923, doi:10.1256/qj.06.25.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2006: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Mon. Wea. Rev., 134, 32093229, doi:10.1175/MWR3237.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2007: Ensemble calibration of 500-hPa geopotential height and 850-hPa and 2-m temperatures using reforecasts. Mon. Wea. Rev., 135, 32733280, doi:10.1175/MWR3468.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., R. Hagedorn, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II: Precipitation. Mon. Wea. Rev., 136, 26202632, doi:10.1175/2007MWR2411.1.

    • Search Google Scholar
    • Export Citation
  • Hopson, T. M., and P. J. Webster, 2010: A 1–10-day ensemble forecasting scheme for the major river basins of Bangladesh: Forecasting severe floods of 2003–07. J. Hydrometeor., 11, 618641, doi:10.1175/2009JHM1006.1.

    • Search Google Scholar
    • Export Citation
  • Jaun, S., and B. Ahrens, 2009: Evaluation of a probabilistic hydrometeorological forecast system. Hydrol. Earth Syst. Sci., 13, 10311043, doi:10.5194/hess-13-1031-2009.

    • Search Google Scholar
    • Export Citation
  • Kann, A., C. Wittmann, Y. Wang, and X. Ma, 2009: Calibrating 2-m temperature of limited-area ensemble forecasts using high-resolution analysis. Mon. Wea. Rev., 137, 33733387, doi:10.1175/2009MWR2793.1.

    • Search Google Scholar
    • Export Citation
  • Kleiber, W., A. E. Raftery, J. Baars, T. Gneiting, C. F. Mass, and E. Grimi, 2011a: Locally calibrated probabilistic temperature forecasting using geostatistical model averaging and local Bayesian model averaging. Mon. Wea. Rev., 139, 26302649, doi:10.1175/2010MWR3511.1.

    • Search Google Scholar
    • Export Citation
  • Kleiber, W., A. E. Raftery, and T. Gneiting, 2011b: Geostatistical model averaging for locally calibrated probabilistic quantitative precipitation forecasting. J. Amer. Stat. Assoc., 106, 12911303, doi:10.1198/jasa.2011.ap10433.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., A. F. Hamlet, D. P. Lettenmaier, and A. Kumar, 1999: Simulations of the ENSO hydroclimate signals in the Pacific Northwest Columbia River basin. Bull. Amer. Meteor. Soc., 80, 23132328, doi:10.1175/1520-0477(1999)080<2313:SOTEHS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and E. Todini, 2002: Towards a comprehensive physically-based rainfall-runoff model. Hydrol. Earth Syst. Sci., 6, 859881, doi:10.5194/hess-6-859-2002.

    • Search Google Scholar
    • Export Citation
  • Marsigli, C., A. Montani, and T. Paccagnella, 2008: A spatial verification method applied to the evaluation of high-resolution ensemble forecasts. Meteor. Appl., 15, 125143, doi:10.1002/met.65.

    • Search Google Scholar
    • Export Citation
  • Montani, A., D. Cesari, C. Marsigli, and T. Paccagnella, 2011: Seven years of activity in the field of mesoscale ensemble forecasting by the COSMO-LEPS system: Main achievements and open challenges. Tellus, 63A, 605624, doi:10.1111/j.1600-0870.2010.00499.x.

    • Search Google Scholar
    • Export Citation
  • Obled, C., G. Bontron, and R. Garçon, 2002: Quantitative precipitation forecasts: A statistical adaptation of model outputs through an analogues sorting approach. Atmos. Res., 63, 303324, doi:10.1016/S0169-8095(02)00038-8.

    • Search Google Scholar
    • Export Citation
  • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174, doi:10.1175/MWR2906.1.

    • Search Google Scholar
    • Export Citation
  • Renner, M., M. G. F. Werner, S. Rademacher, and E. Sprokkereef, 2009: Verification of ensemble flow forecast for the River Rhine. J. Hydrol., 376, 463475, doi:10.1016/j.jhydrol.2009.07.059.

    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, doi:10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • Roulin, E., and S. Vannitsem, 2012: Postprocessing of ensemble precipitation predictions with extended logistic regression based on hindcasts. Mon. Wea. Rev., 140, 874888, doi:10.1175/MWR-D-11-00062.1.

    • Search Google Scholar
    • Export Citation
  • Roulston, M. S., and L. A. Smith, 2003: Combining dynamical and statistical ensembles. Tellus, 55A, 1630, doi:10.1034/j.1600-0870.2003.201378.x.

    • Search Google Scholar
    • Export Citation
  • Ruosteenoja, K., 1988: Factors affecting the occurrence and lifetime of 500-mb height analogues: A study based on a large amount of data. Mon. Wea. Rev., 116, 368376, doi:10.1175/1520-0493(1988)116<0368:FATOAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmeits, M. J., and K. J. Kok, 2010: A comparison between raw ensemble output, (modified) Bayesian model averaging, and extended logistic regression using ECMWF ensemble precipitation reforecasts. Mon. Wea. Rev., 138, 41994211, doi:10.1175/2010MWR3285.1.

    • Search Google Scholar
    • Export Citation
  • Sloughter, J. M., A. E. Raftery, T. Gneiting, and C. Fraley, 2007: Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Mon. Wea. Rev., 135, 32093220, doi:10.1175/MWR3441.1.

    • Search Google Scholar
    • Export Citation
  • Steppeler, J., G. Doms, U. Schattler, H. W. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric, 2003: Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor. Atmos. Phys., 82, 7596, doi:10.1007/s00703-001-0592-9.

    • Search Google Scholar
    • Export Citation
  • Stewart, T. R., and P. Reagan-Cirincione, 1991: Coefficients for debiasing forecasts. Mon. Wea. Rev., 119, 20472051, doi:10.1175/1520-0493(1991)119<2047:CFDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., O. Talagrand, and Y. Zhu, 2006: The attributes of forecast systems: A general framework for the evaluation and calibration of weather forecasts. Predictability of Weather and Climate, T. Palmer and R. Hagedorn, Eds., Cambridge University Press, 584–595.

  • Unger, D. A., H. van den Dool, E. O’Lenic, and D. Collins, 2009: Ensemble regression. Mon. Wea. Rev., 137, 23652379, doi:10.1175/2008MWR2605.1.

    • Search Google Scholar
    • Export Citation
  • Verbunt, M., A. Walser, J. Gurtz, A. Montani, and C. Schär, 2007: Probabilistic flood forecasting with a limited-area ensemble prediction system: Selected case studies. J. Hydrometeor., 8, 897909, doi:10.1175/JHM594.1.

    • Search Google Scholar
    • Export Citation
  • Voisin, N., J. C. Schaake, and D. P. Lettenmaier, 2010: Calibration and downscaling methods for quantitative ensemble precipitation forecasts. Wea. Forecasting, 25, 16031627, doi:10.1175/2010WAF2222367.1.

    • Search Google Scholar
    • Export Citation
  • Walser, A., and C. Schär, 2004: Convection-resolving precipitation forecasting and its predictability in Alpine river catchments. J. Hydrol., 288, 5773, doi:10.1016/j.jhydrol.2003.11.035.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. H. Bishop, 2005: Improvement of ensemble reliability with a new dressing kernel. Quart. J. Roy. Meteor. Soc., 131, 965986, doi:10.1256/qj.04.120.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and Coauthors, 2010: Extended-range probabilistic forecasts of Ganges and Brahmaputra floods in Bangladesh. Bull. Amer. Meteor. Soc., 91, 14931514, doi:10.1175/2010BAMS2911.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2000: Diagnostic verification of the Climate Prediction Center long-lead outlooks, 1995–98. J. Climate, 13, 23892403, doi:10.1175/1520-0442(2000)013<2389:DVOTCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2009: Extending logistic regression to provide full-probability-distribution MOS forecasts. Meteor. Appl., 16, 361368, doi:10.1002/met.134.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. Academic Press, 676 pp.

  • Wood, A. W., E. P. Maurer, A. Kumar, and D. Lettenmaier, 2002: Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res., 107, 4429, doi:10.1029/2001JD000659.

  • Yuan, H., X. Gao, S. L. Mullen, S. Sorooshian, J. Du, and H.-M. H. Juang, 2007: Calibration of probabilistic quantitative precipitation forecasts with an artificial neural network. Wea. Forecasting, 22, 12871303, doi:10.1175/2007WAF2006114.1.

    • Search Google Scholar
    • Export Citation
  • Zalachori, I., M.-H. Ramos, R. Garçon, T. Mathevet, and J. Gailhard, 2012: Statistical processing of forecasts for hydrological ensemble prediction: A comparative study of different bias correction strategies. Adv. Sci. Res., 8, 135141, doi:10.5194/asr-8-135-2012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 216 79 1
PDF Downloads 103 44 0