Polar Lows over the Nordic Seas: Improved Representation in ERA-Interim Compared to ERA-40 and the Impact on Downscaled Simulations

Thibaut Laffineur Ecole Nationale de la Météorologie, Météo-France, Toulouse, and Laboratoire de Météorologie Dynamique/IPSL, CNRS, Ecole Polytechnique, Palaiseau, France

Search for other papers by Thibaut Laffineur in
Current site
Google Scholar
PubMed
Close
,
Chantal Claud Laboratoire de Météorologie Dynamique/IPSL, CNRS, Ecole Polytechnique, Palaiseau, France

Search for other papers by Chantal Claud in
Current site
Google Scholar
PubMed
Close
,
Jean-Pierre Chaboureau Laboratoire d’Aérologie, University of Toulouse, and CNRS, Toulouse, France

Search for other papers by Jean-Pierre Chaboureau in
Current site
Google Scholar
PubMed
Close
, and
Gunnar Noer The Norwegian Meteorological Institute, Tromsoe, Norway

Search for other papers by Gunnar Noer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Polar lows are intense high-latitude mesocyclones that form during the cold season over open sea. Their relatively small-scale and short life span lead to a rather poor representation in model outputs and meteorological reanalyses. In this paper, the ability of the Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) to represent polar lows over the Norwegian and Barents Sea is assessed, and a comparison with the 40-yr ECMWF Re-Analysis (ERA-40) is provided for three cold seasons (1999–2000 until 2001–02). A better representation in ERA-Interim is found, with 13 systems captured out of the 29 observed, against 6 in the case of ERA-40. Reasons for the lack of representation are identified. Unexpectedly, the representation of different polar low sizes does not appear to be linked to the resolution. Rather, it is the representation of synoptic conditions that appears to be essential. In a second part, a downscaling is conducted using the mesoscale model Méso-NH. For each observed polar low, a pair of simulations is performed: one initialized by ERA-Interim and the other one by ERA-40. An improvement is noted with 22 polar lows represented when ERA-Interim is used. Through a model-to-satellite approach, it is shown that even if polar lows are simulated, convective processes remain insufficiently represented. Wind speeds, which were underestimated in reanalyses, are nevertheless more realistic in the Méso-NH simulations. These results are supported by a spectral analysis of reanalyses and Méso-NH fields.

Corresponding author address: Chantal Claud, Laboratoire de Meteorologie Dynamique/IPSL, CNRS, Ecole Polyetchnique, Palaiseau 91128, France. E-mail: chclaud@lmd.polytechnique.fr

Abstract

Polar lows are intense high-latitude mesocyclones that form during the cold season over open sea. Their relatively small-scale and short life span lead to a rather poor representation in model outputs and meteorological reanalyses. In this paper, the ability of the Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) to represent polar lows over the Norwegian and Barents Sea is assessed, and a comparison with the 40-yr ECMWF Re-Analysis (ERA-40) is provided for three cold seasons (1999–2000 until 2001–02). A better representation in ERA-Interim is found, with 13 systems captured out of the 29 observed, against 6 in the case of ERA-40. Reasons for the lack of representation are identified. Unexpectedly, the representation of different polar low sizes does not appear to be linked to the resolution. Rather, it is the representation of synoptic conditions that appears to be essential. In a second part, a downscaling is conducted using the mesoscale model Méso-NH. For each observed polar low, a pair of simulations is performed: one initialized by ERA-Interim and the other one by ERA-40. An improvement is noted with 22 polar lows represented when ERA-Interim is used. Through a model-to-satellite approach, it is shown that even if polar lows are simulated, convective processes remain insufficiently represented. Wind speeds, which were underestimated in reanalyses, are nevertheless more realistic in the Méso-NH simulations. These results are supported by a spectral analysis of reanalyses and Méso-NH fields.

Corresponding author address: Chantal Claud, Laboratoire de Meteorologie Dynamique/IPSL, CNRS, Ecole Polyetchnique, Palaiseau 91128, France. E-mail: chclaud@lmd.polytechnique.fr
Save
  • Adakudlu, M., and I. Barstad, 2011: Impacts of the ice-cover and sea-surface temperature on a polar low over the Nordic seas: A numerical case study. Quart. J. Roy. Meteor. Soc., 137, 17161730, doi:10.1002/qj.856.

    • Search Google Scholar
    • Export Citation
  • Aspelien, T., T. Iversen, J. B. Bremnes, and I.-L. Frogner, 2011: Short-range probabilistic forecasts from the Norwegian limited-area EPS: Long-term validation and a polar low study. Tellus, 63A, 564584, doi:10.1111/j.1600-0870.2010.00502.x.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., E. Bazile, F. Guichard, P. Mascart, and E. Richard, 2001: A mass-flux convection scheme for regional and global models. Quart. J. Roy. Meteor. Soc., 127, 869886, doi:10.1002/qj.49712757309.

    • Search Google Scholar
    • Export Citation
  • Belamari, S., 2005: Report on uncertainty estimates of an optimal bulk formulation for surface turbulent fluxes. Marine Environment and Security for the European Area-Integrated Project (MERSEA IP), Deliverable D.4.1.2, 29 pp.

  • Blechschmidt, A.-M., 2008: A 2-year climatology of polar low events over the Nordic Seas from satellite remote sensing. Geophys. Res. Lett., 35, L09815, doi:10.1029/2008GL033706.

  • Bobylev, L. P., E. V. Zabolotskikh, L. M. Mitnik, and M. L. Mitnik, 2011: Arctic polar low detection and monitoring using atmospheric water vapor retrievals from satellite passive microwave data. IEEE Trans. Geosci. Remote Sens., 49, 33023310, doi:10.1109/TGRS.2011.2143720.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and S. L. Gray, 2008: An objective climatology of the dynamical forcing of polar lows in the Nordic Seas. Int. J. Climatol., 28, 19031919, doi:10.1002/joc.1686.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and S. L. Gray, 2009: The dynamics of a polar low assessed using potential vorticity inversion. Quart. J. Roy. Meteor. Soc., 135, 880893, doi:10.1002/qj.411.

    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., 1985: Satellite climatological aspects of the “polar low” and “instant occlusion.” Tellus, 37A, 433450, doi:10.1111/j.1600-0870.1985.tb00442.x.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J.-P., and P. Bechtold, 2002: A simple cloud parameterization derived from cloud resolving model data: Diagnostic and prognostic applications. J. Atmos. Sci., 59, 23622372, doi:10.1175/1520-0469(2002)059<2362:ASCPDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J.-P., and P. Bechtold, 2005: Statistical representation of clouds in a regional model and the impact on the diurnal cycle of convection during Tropical Convection, Cirrus and Nitrogen Oxides (TROCCINOX). J. Geophys. Res., 110, D17103, doi:10.1029/2004JD005645.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J.-P., and Coauthors, 2008: A midlatitude cloud database validated with satellite observations. J. Appl. Meteor. Climatol., 47, 13371353, doi:10.1175/2007JAMC1731.1.

    • Search Google Scholar
    • Export Citation
  • Clark, H., and J.-P. Chaboureau, 2010: Uncertainties in short-term forecasts of a Mediterranean heavy precipitation event: Assessment with satellite observations. J. Geophys. Res., 115, D22213, doi:10.1029/2010JD014388.

    • Search Google Scholar
    • Export Citation
  • Claud, C., K. B. Katsaros, G. W. Petty, A. Chedin, and N. A. Scott, 1992: A cold air outbreak over the Norwegian Sea observed with the TIROS-N Operational Vertical Sounder (TOVS) and the Special Sensor Microwave Imager (SSM/I). Tellus, 44A, 100118, doi:10.1034/j.1600-0870.1992.t01-1-00002.x.

    • Search Google Scholar
    • Export Citation
  • Claud, C., N. M. Mognard, K. B. Katsaros, A. Chedin, and N. A. Scott, 1993: Satellite observations of a polar low over the Norwegian Sea by Special Sensor Microwave Imager, Geosat, and TIROS-N Operational Vertical Sounder. J. Geophys. Res., 98, 14 487–14 506, doi:10.1029/93JC00650.

    • Search Google Scholar
    • Export Citation
  • Claud, C., G. Heinemann, E. Raustein, and L. McMurdie, 2004: Polar low le Cygne: Satellite observations and numerical simulations. Quart. J. Roy. Meteor. Soc., 130, 10751102, doi:10.1256/qj.03.72.

    • Search Google Scholar
    • Export Citation
  • Claud, C., B. Duchiron, and P. Terray, 2007: Associations between large-scale atmospheric circulation and polar low developments over the North Atlantic during winter. J. Geophys. Res.,112, D12101, doi:10.1029/2006JD008251.

  • Claud, C., B. M. Funatsu, G. Noer, and J.-P. Chaboureau, 2009: Observation of polar lows by the Advanced Microwave Sounding Unit: Potential and limitations. Tellus, 61A, 264277, doi:10.1111/j.1600-0870.2008.00384.x.

    • Search Google Scholar
    • Export Citation
  • Condron, A., and I. A. Renfrew, 2013: The impact of polar mesoscale storms on northeast Atlantic Ocean circulation. Nat. Geosci., 6, 3437, doi:10.1038/ngeo1661.

    • Search Google Scholar
    • Export Citation
  • Condron, A., G. R. Bigg, and I. A. Renfrew, 2006: Polar mesoscale cyclones in the Northeast Atlantic: Comparing climatologies from ERA-40 and satellite imagery. Mon. Wea. Rev., 134, 15181533, doi:10.1175/MWR3136.1.

    • Search Google Scholar
    • Export Citation
  • Condron, A., G. R. Bigg, and I. A. Renfrew, 2008: Modeling the impact of polar mesocyclones on ocean circulation. J. Geophys. Res., 113, C10005, doi:10.1029/2007JC004599.

  • Cuxart, J., P. Bougeault, and J.-L. Redelsperger, 2000: A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteor. Soc., 126, 130, doi:10.1002/qj.49712656202.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and R. Rotunno, 1989: Polar lows as arctic hurricanes. Tellus, 41A, 117, doi:10.1111/j.1600-0870.1989.tb00362.x.

  • Føre, I., and T. E. Nordeng, 2012: A polar low observed over the Norwegian Sea on 3–4 March 2008: High-resolution numerical experiments. Quart. J. Roy. Meteor. Soc., 138, 1983–1998, doi:10.1002/qj.1930

    • Search Google Scholar
    • Export Citation
  • Heinemann, G., and C. Claud, 1997: Report of a workshop on “Theoretical and observational studies of polar lows ” of the European Geophysical Society Polar Lows Working Group. Bull. Amer. Meteor. Soc., 78, 26432658.

    • Search Google Scholar
    • Export Citation
  • Hewson, T. D., G. C. Craig, and C. Claud, 2000: Evolution and mesoscale structure of a polar low outbreak. Quart. J. Roy. Meteor. Soc., 126, 1031–1063, doi:10.1002/qj.49712656411.

  • Kolstad, E. W., 2011: A global climatology of favourable conditions for polar lows. Quart. J. Roy. Meteor. Soc., 137, 17491761, doi:10.1002/qj.888.

    • Search Google Scholar
    • Export Citation
  • Kristiansen, J., S. L. Sorland, T. Iversen, D. Bjorge, and M. Ø. Koltzow, 2011: High-resolution ensemble prediction of a polar low development. Tellus, 63A, 585604, doi:10.1111/j.1600-0870.2010.00498.x.

    • Search Google Scholar
    • Export Citation
  • Lafore, J.-P., and Coauthors, 1998: The Meso-NH Atmospheric Simulation System. Part I: Adiabatic formulation and control simulations. Ann. Geophys., 16, 90109, doi:10.1007/s00585-997-0090-6.

    • Search Google Scholar
    • Export Citation
  • Mallet, P.-E., C. Claud, C. Cassou, G. Noer, and K. Kodera, 2013: Polar lows over the Nordic and Labrador Seas: Synoptic circulation patterns and associations with North Atlantic–Europe wintertime weather regimes. J. Geophys. Res., 118, 2455–2472, doi:10.1002/jgrd.50246.

    • Search Google Scholar
    • Export Citation
  • McInnes, H., J. Kristiansen, J. E. Kristjánsson, and H. Schyberg, 2011: The role of horizontal resolution of polar low simulations. Quart. J. Roy. Meteor. Soc., 137, 16741687, doi:10.1002/qj.849.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., M. C. Reader, J. York, and S. Sathiyamoorthy, 1996: Polar lows in the Labrador Sea. Tellus,48A, 17–40, doi:10.1034/j.1600-0870.1996.00002.x.

  • Noer, G., Ø. Sætra, T. Lien, and Y. Gusdal, 2011: A climatological study of polar lows in the Nordic Seas. Quart. J. Roy. Meteor. Soc., 137, 17621772, doi:10.1002/qj.846.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., and B. Røsting, 2011: A polar low named Vera: The use of potential vorticity diagnostics to assess its development. Quart. J. Roy. Meteor. Soc., 137, 17901803, doi:10.1002/qj.886.

    • Search Google Scholar
    • Export Citation
  • Pinty, J.-P., and P. Jabouille, 1998: A mixed-phase cloud parameterization for use in mesoscale non-hydrostatic model: Simulations of a squall line and of orographic precipitation. Preprints, Conf. on Cloud Physics, Everett, WA, Amer. Meteor. Soc., 217–220.

  • Rasmussen, E. A., 1979: The polar low as an extratropical CISK disturbance. Quart. J. Roy. Meteor. Soc., 105, 531549, doi:10.1002/qj.49710544504.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. A., and J. Turner, 2003: Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge University Press, 612 pp.

  • Reistad, M., Ø. Breivik, H. Haakenstad, O. J. Aarnes, B. R. Furevik, and J.-R. Bidlot, 2011: A high-resolution hindcast of wind and waves for the North Sea, the Norwegian Sea, and the Barents Sea. J. Geophys. Res., 116, C05019, doi:10.1029/2010JC006402.

    • Search Google Scholar
    • Export Citation
  • Ricard, D., C. Lac, S. Riette, R. Legrand, and A. Mary, 2013: Kinetic energy spectra characteristics of two convection-permitting limited-area models AROME and Meso-NH. Quart. J. Roy. Meteor. Soc., 139, 13271341, doi:10.1002/qj.2025.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and J. K. Gibson, 2000: The ERA-40 Project Plan. ERA-40 Project Rep. Series 2000, Rep. 1, ECMWF, Reading, United Kingdom, 63 pp.

  • Wagner, J. S., A. Gohm, A. Dörnbrack, and A. Schäfler, 2011: The mesoscale structure of a polar low: Airborne lidar measurements and simulations. Quart. J. Roy. Meteor. Soc., 137, 15161531, doi:10.1002/qj.8571.

    • Search Google Scholar
    • Export Citation
  • West, J. J., and G. K. Hovelsrud, 2010: Cross-scale adaptation challenges in the coastal fisheries: Findings from Lebesby, Northern Norway. Arctic, 63, 338354, doi:10.14430/arctic1497.

    • Search Google Scholar
    • Export Citation
  • Wilhelmsen, K., 1985: Climatological study of gale-producing polar lows near Norway. Tellus, 37A, 451459, doi:10.1111/j.1600-0870.1985.tb00443.x.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and G. W. Petty, 2010: Intercomparison of bulk microphysics schemes in model simulations of polar lows. Mon. Wea. Rev.,138, 2211–2228, doi:10.1175/2010MWR3122.1.

  • Yanase, W., and H. Niino, 2007: Dependence of polar low development on baroclinicity and physical processes: An idealized high-resolution numerical experiment. J. Atmos. Sci., 64, 30443067, doi:10.1175/JAS4001.1.

    • Search Google Scholar
    • Export Citation
  • Zahn, M., and H. von Storch, 2008: A long-term climatology of North Atlantic polar lows. Geophys. Res. Lett., 35, L22702, doi:10.1029/2008GL035769.

  • Zahn, M., H. von Storch, and S. Bakan, 2008: Climate mode simulation of North Atlantic polar lows in a limited area model. Tellus, 60A, 620–631, doi:10.1111/j.1600-0870.2008.00330.x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1030 724 28
PDF Downloads 189 45 3