A 4DVAR System for the Navy Coastal Ocean Model. Part II: Strong and Weak Constraint Assimilation Experiments with Real Observations in Monterey Bay

Hans Ngodock Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by Hans Ngodock in
Current site
Google Scholar
PubMed
Close
and
Matthew Carrier Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by Matthew Carrier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A four-dimensional variational data assimilation (4DVAR) system was recently developed for the Navy Coastal Ocean Model (NCOM). The system was tested in the first part of this study using synthetic surface and subsurface data. Here, a full range of real surface and subsurface data is considered following encouraging results from the preliminary test. The data include sea surface temperature and sea surface height from satellite, as well as subsurface observations from gliders deployed during the second Autonomous Ocean Sampling Network field experiment in California’s Monterey Bay. Data assimilation is carried out with strong and weak constraints, and results are compared against independent observations. This study clearly shows that the 4DVAR approach improves the free-running model simulation and that the weak constraint experiment has lower analysis errors than does the strong constraint version.

Naval Research Laboratory Contribution Number JA/7320-13-13-1822.

Corresponding author address: Hans Ngodock, Naval Research Laboratory, Code 7321, Stennis Space Center, MS 39529. E-mail: hans.ngodock@nrlssc.navy.mil

Abstract

A four-dimensional variational data assimilation (4DVAR) system was recently developed for the Navy Coastal Ocean Model (NCOM). The system was tested in the first part of this study using synthetic surface and subsurface data. Here, a full range of real surface and subsurface data is considered following encouraging results from the preliminary test. The data include sea surface temperature and sea surface height from satellite, as well as subsurface observations from gliders deployed during the second Autonomous Ocean Sampling Network field experiment in California’s Monterey Bay. Data assimilation is carried out with strong and weak constraints, and results are compared against independent observations. This study clearly shows that the 4DVAR approach improves the free-running model simulation and that the weak constraint experiment has lower analysis errors than does the strong constraint version.

Naval Research Laboratory Contribution Number JA/7320-13-13-1822.

Corresponding author address: Hans Ngodock, Naval Research Laboratory, Code 7321, Stennis Space Center, MS 39529. E-mail: hans.ngodock@nrlssc.navy.mil
Save
  • Barron, C. N., A. B. Kara, H. E. Hurlburt, C. Rowley, and L. F. Smedstad, 2004: Sea surface height predictions from the Global Navy Coastal Ocean Model (NCOM) during 1998–2001. J. Atmos. Oceanic Technol., 21, 18761894, doi:10.1175/JTECH-1680.1.

    • Search Google Scholar
    • Export Citation
  • Barron, C. N., A. B. Kara, P. J. Martin, R. C. Rhodes, and L. F. Smedstad, 2006: Formulation, implementation and examination of vertical coordinate choices in the Global Navy Coastal Ocean Model (NCOM). Ocean Modell., 11, 347375, doi:10.1016/j.ocemod.2005.01.004.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., 1992: Inverse Methods in Physical Oceanography. Cambridge University Press, 347 pp.

  • Bennett, A. F., 2002: Inverse Modeling of the Ocean and Atmosphere. Cambridge University Press, 234 pp.

  • Chao, Y., and Coauthors, 2009: Development, implementation and evaluation of a data-assimilative ocean forecasting system off the central California coast. Deep-Sea Res. II,56, 100126, doi:10.1016/j.dsr2.2008.08.011.

    • Search Google Scholar
    • Export Citation
  • Cummings, J., 2005: Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131, 35833604, doi:10.1256/qj.05.105.

    • Search Google Scholar
    • Export Citation
  • Haley, P. J., P. F. J. Lermusiaux, W. G. Leslie, and A. R. Robinson, 1999: Harvard Ocean Prediction System (HOPS). [Available online at http://mseas.mit.edu/archive/HOPS/HOPS.html.]

  • Haley, P. J., and Coauthors, 2009: Forecasting and reanalysis in the Monterey Bay/California Current region for the Autonomous Ocean Sampling Network-II experiment. Deep-Sea Res. II,56, 127148, doi:10.1016/j.dsr2.2008.08.010.

    • Search Google Scholar
    • Export Citation
  • Kindle, J. C., R. M. Hodur, S. deRada, J. D. Paduan, L. K. Rosenfeld, and L. Q. Chavez, 2002: A COAMPSTM reanalysis for the Eastern Pacific: Properties of the diurnal sea breeze along the central California coast. Geophys. Res. Lett.,29, 2203, doi:10.1029/2002GL015566.

  • Lermusiaux, P. F. J., A. R. Robinson, P. J. Haley, and W. G. Leslie, 2002: Advanced interdisciplinary data assimilation: Filtering and smoothing via error subspace statistical estimation. Proc. OCEANS 2002, Vol. 2, IEEE, Biloxi, MS, 795–802, doi:10.1109/OCEANS.2002.1192071.

  • Liang, X. S., and A. R. Robinson, 2009: Multiscale processes and nonlinear dynamics of the circulation and upwelling events off Monterey Bay. J. Phys. Oceanogr., 39, 290313, doi:10.1175/2008JPO3950.1.

    • Search Google Scholar
    • Export Citation
  • Martin, P., 2000: Description of the Navy Coastal Ocean Model Version 1.0. NRL Rep. NRL/FR/7322-00-9961, 42 pp.

  • Ngodock, H., and M. Carrier, 2014: A 4DVAR system for the Navy Coastal Ocean Model. Part I: System description and assimilation of synthetic observations in Monterey Bay. Mon. Wea. Rev.,142, 2085–2107, doi:10.1175/MWR-D-13-00221.1.

  • Ramp, S. R., and Coauthors, 2009: Preparing to predict: The Second Autonomous Ocean Sampling Network (AOSN-II) experiment in the Monterey Bay. Deep-Sea Res. II,56,6886, doi:10.1016/j.dsr2.2008.08.013.

    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., 1999: Forecasting and simulating coastal ocean processes and variabilities with the Harvard Ocean Prediction System. Coastal Ocean Prediction, C. N. K. Mooers, Ed., Coastal and Estuarine Studies Series, Amer. Geophys. Union, 77–100.

    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., H. G. Arango, A. Warn-Varnas, W. G. Leslie, A. J. Miller, P. J. Haley Jr., and C. J. Lozano, 1996: Real-time regional forecasting. Modern Approaches to Data Assimilation in Ocean Modelling, P. Malanotte-Rizzoli, Ed., Elsevier Oceanography Series, Elsevier Science, 377–412.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System: A split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Shulman, I., C. R. Wu, J. K. Lewis, J. D. Paduan, L. K. Rosenfeld, J. C. Kindle, S. R. Ramp, and C. A. Collins, 2002: High resolution modeling and data assimilation in The Monterey Bay. Cont. Shelf Res., 22, 11291151, doi:10.1016/S0278-4343(01)00100-5.

    • Search Google Scholar
    • Export Citation
  • Shulman, I., and Coauthors, 2009: Impact of glider data assimilation on the Monterey Bay model. Deep-Sea Res. II,56, 188198, doi:10.1016/j.dsr2.2008.08.003.

    • Search Google Scholar
    • Export Citation
  • Shulman, I., S. Anderson, C. Rowley, S. DeRada, J. Doyle, and S. Ramp, 2010: Comparison of upwelling and relaxation events in the Monterey Bay area. J. Geophys. Res.,115, C06016, doi:10.1029/2009JC005483.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 474 316 28
PDF Downloads 123 38 3