Tornado Climatology of Turkey

Abdullah Kahraman Graduate School of Science, Engineering and Technology, Istanbul Technical University, Istanbul, Turkey

Search for other papers by Abdullah Kahraman in
Current site
Google Scholar
PubMed
Close
and
Paul M. Markowski Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Paul M. Markowski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A climatology of tornadoes in Turkey is presented using records from a wide variety of sources (e.g., the Turkish State Meteorological Service, European Severe Weather Database, newspaper archives, Internet searches, etc.). The climatology includes the annual, diurnal, geographical, and intensity distributions of both mesocyclonic and nonmesocyclonic tornadoes. From 1818 to 2013, 385 tornado cases were obtained. The tornadoes range from F0 to F3, with F1 being the most frequently reported or inferred intensity. Mesocyclonic tornadoes are most likely in May and June, and a secondary maximum in frequency is present in October and November. Nonmesocyclonic tornadoes (waterspouts) are most common in the winter along the (southern) Mediterranean coast and in the fall along the Black Sea (northern) coast. Tornadoes (both mesocyclonic and nonmesocyclonic) are most likely in the afternoon and early evening hours.

Corresponding author address: Abdullah Kahraman, Graduate School of Science, Engineering and Technology, Istanbul Technical University, Maslak, Istanbul 34469, Turkey. E-mail: kahraman@meteogreen.com

Abstract

A climatology of tornadoes in Turkey is presented using records from a wide variety of sources (e.g., the Turkish State Meteorological Service, European Severe Weather Database, newspaper archives, Internet searches, etc.). The climatology includes the annual, diurnal, geographical, and intensity distributions of both mesocyclonic and nonmesocyclonic tornadoes. From 1818 to 2013, 385 tornado cases were obtained. The tornadoes range from F0 to F3, with F1 being the most frequently reported or inferred intensity. Mesocyclonic tornadoes are most likely in May and June, and a secondary maximum in frequency is present in October and November. Nonmesocyclonic tornadoes (waterspouts) are most common in the winter along the (southern) Mediterranean coast and in the fall along the Black Sea (northern) coast. Tornadoes (both mesocyclonic and nonmesocyclonic) are most likely in the afternoon and early evening hours.

Corresponding author address: Abdullah Kahraman, Graduate School of Science, Engineering and Technology, Istanbul Technical University, Maslak, Istanbul 34469, Turkey. E-mail: kahraman@meteogreen.com
Save
  • Bissolli, P., J. Grieser, N. Dotzek, and M. Welsch, 2007: Tornadoes in Germany 1950–2003 and their relation to particular weather conditions. Global Planet. Change, 57, 124–138, doi:10.1016/j.gloplacha.2006.11.007.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and N. Dotzek, 2008: The spatial distribution of severe convective storms and an analysis of their secular changes. Climate Extremes and Society, H. F. Diaz and R. Murnane, Eds., Cambridge University Press, 35–53.

  • Doswell, C. A., III, H. E. Brooks, and N. Dotzek, 2009: On the implementation of the enhanced Fujita scale in the USA. Atmos. Res., 93, 554–563, doi:10.1016/j.atmosres.2008.11.003.

    • Search Google Scholar
    • Export Citation
  • Dotzek, N., 2001: Tornadoes in Germany. Atmos. Res., 56, 233–251, doi:10.1016/S0169-8095(00)00075-2.

  • Dotzek, N., P. Groenemeijer, B. Feuerstein, and A. M. Holzer, 2009: Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. Atmos. Res., 93, 575–586, doi:10.1016/j.atmosres.2008.10.020.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., J. G. LaDue, J. T. Ferree, K. Scharfenberg, C. Maier, and W. L. Coulbourne, 2013: Tornado intensity estimation: Past, present, and future. Bull. Amer. Meteor. Soc., 94, 641–653, doi:10.1175/BAMS-D-11-00006.1.

    • Search Google Scholar
    • Export Citation
  • Feuerstein, B., P. Groenemeijer, E. Dirksen, M. Hubrig, A. M. Holzer, and N. Dotzek, 2011: Towards an improved wind speed scale and damage description adapted for Central Europe. Atmos. Res., 100, 547–564, doi:10.1016/j.atmosres.2010.12.026.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1971: Proposed characterization of tornadoes and hurricanes by area and intensity. University of Chicago SMRP Research Paper 91, 42 pp.

  • Gayà, M., 2011: Tornadoes and severe storms in Spain. Atmos. Res., 100, 334–343, doi:10.1016/j.atmosres.2010.10.019.

  • Gayà, M., V. Homar, R. Romero, and C. Ramis, 2001: Tornadoes and waterspouts in the Balearic Islands: Phenomena and environment characterization. Atmos. Res., 56, 253–267, doi:10.1016/S0169-8095(00)00076-4.

    • Search Google Scholar
    • Export Citation
  • Giaiotti, D. B., M. Giovannoni, A. Pucillo, and F. Stel, 2007: The climatology of tornadoes and waterspouts in Italy. Atmos. Res., 83, 534–541, doi:10.1016/j.atmosres.2005.10.020.

    • Search Google Scholar
    • Export Citation
  • Gilbert, 1823: Von Wasserhosen und Erdtromben und ihrer verwüstenden Kraft, neuere Bemerkungen (On waterspouts and tornadoes and their devastating power, newer comments). Ann. Phys. (Berlin),73, 95–110, doi:10.1002/andp.18230730108.

  • Holzer, A. M., 2001: Tornado climatology of Austria. Atmos. Res., 56, 203–211, doi:10.1016/S0169-8095(00)00073-9.

  • Kocaturk, O., 2012: The great storm and tornado incident in Istanbul (19 July 1914). Int. J. Turcologia,7 (13), 27–37.

  • Marcinoniene, I., 2003: Tornadoes in Lithuania in the period of 1950–2002 including analysis of the strongest tornado of 29 May 1981. Atmos. Res., 67–68, 475–484, doi:10.1016/S0169-8095(03)00060-7.

    • Search Google Scholar
    • Export Citation
  • Rauhala, J., H. E. Brooks, and D. M. Schultz, 2012: Tornado climatology of Finland. Mon. Wea. Rev., 140, 1446–1456, doi:10.1175/MWR-D-11-00196.1.

    • Search Google Scholar
    • Export Citation
  • Sioutas, M. V., 2011: A tornado and waterspout climatology for Greece. Atmos. Res., 100, 344–356, doi:10.1016/j.atmosres.2010.08.011.

    • Search Google Scholar
    • Export Citation
  • Sioutas, M. V., and A. G. Keul, 2007: Waterspouts of the Adriatic, Ionian and Aegean Sea and their meteorological environment. Atmos. Res., 83, 542–557, doi:10.1016/j.atmosres.2005.08.009.

    • Search Google Scholar
    • Export Citation
  • Sioutas, M. V., R. Doe, S. Michaelides, M. Christodoulou, and R. Robins, 2006: Meteorological conditions contributing to the development of severe tornadoes in southern Cyprus. Weather, 61, 10–16, doi:10.1256/wea.268.04.

    • Search Google Scholar
    • Export Citation
  • Szilárd, S., 2007: A systematic approach to synoptic tornado climatology of Hungary for the recent years (1996–2001) based on official damage reports. Atmos. Res., 83, 263–271, doi:10.1016/j.atmosres.2005.10.025.

    • Search Google Scholar
    • Export Citation
  • Tyrrell, J., 2003: A tornado climatology for Ireland. Atmos. Res., 67–68, 671–684, doi:10.1016/S0169-8095(03)00080-2.

  • Wegener, A., 1917: Wind- und Wasserhosen in Europa (Tornadoes and Waterspouts in Europe). Fredrich Vieweg & Sohn, 301 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7750 5445 226
PDF Downloads 2089 539 70