Multiplicative and Additive Incremental Variational Data Assimilation for Mixed Lognormal–Gaussian Errors

Steven J. Fletcher Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Steven J. Fletcher in
Current site
Google Scholar
PubMed
Close
and
Andrew S. Jones Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Andrew S. Jones in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An advance that made Gaussian-based three- and four-dimensional variational data assimilation (3D- and 4DVAR, respectively) operationally viable for numerical weather prediction was the introduction of the incremental formulation. This reduces the computational costs of the variational methods by searching for a small increment to a background state whose evolution is approximately linear. In this paper, incremental formulations for 3D- and 4DVAR with lognormal and mixed lognormal–Gaussian-distributed background and observation errors are presented. As the lognormal distribution has geometric properties, a geometric version for the tangent linear model (TLM) is proven that enables the linearization of the observational component of the cost functions with respect to a geometric increment. This is combined with the additive TLM for the mixed distribution–based cost function. Results using the mixed incremental scheme with the Lorenz’63 model are presented for different observational error variances, observation set sizes, and assimilation window lengths. It is shown that for sparse accurate observations the scheme has a relative error of ±0.5% for an assimilation window of 100 time steps. This improves to ±0.3% with more frequent observations. The distributions of the analysis errors are presented that appear to approximate a lognormal distribution with a mode at 1, which, given that the background and observational errors are unbiased in Gaussian space, shows that the scheme is approximating a mode and not a median. The mixed approach is also compared against a Gaussian-only incremental scheme where it is shown that as the z-component observational errors become more lognormal, the mixed approach appears to be more accurate than the Gaussian approach.

Corresponding author address: Dr. Steven J. Fletcher, Cooperative Institute for Research in the Atmosphere, Colorado State University, 1375 Campus Delivery, Fort Collins, CO 80523-1375. E-mail: steven.fletcher@colostate.edu

Abstract

An advance that made Gaussian-based three- and four-dimensional variational data assimilation (3D- and 4DVAR, respectively) operationally viable for numerical weather prediction was the introduction of the incremental formulation. This reduces the computational costs of the variational methods by searching for a small increment to a background state whose evolution is approximately linear. In this paper, incremental formulations for 3D- and 4DVAR with lognormal and mixed lognormal–Gaussian-distributed background and observation errors are presented. As the lognormal distribution has geometric properties, a geometric version for the tangent linear model (TLM) is proven that enables the linearization of the observational component of the cost functions with respect to a geometric increment. This is combined with the additive TLM for the mixed distribution–based cost function. Results using the mixed incremental scheme with the Lorenz’63 model are presented for different observational error variances, observation set sizes, and assimilation window lengths. It is shown that for sparse accurate observations the scheme has a relative error of ±0.5% for an assimilation window of 100 time steps. This improves to ±0.3% with more frequent observations. The distributions of the analysis errors are presented that appear to approximate a lognormal distribution with a mode at 1, which, given that the background and observational errors are unbiased in Gaussian space, shows that the scheme is approximating a mode and not a median. The mixed approach is also compared against a Gaussian-only incremental scheme where it is shown that as the z-component observational errors become more lognormal, the mixed approach appears to be more accurate than the Gaussian approach.

Corresponding author address: Dr. Steven J. Fletcher, Cooperative Institute for Research in the Atmosphere, Colorado State University, 1375 Campus Delivery, Fort Collins, CO 80523-1375. E-mail: steven.fletcher@colostate.edu
Save
  • Cho, H.-K., K. P. Bowman, and G. R. North, 2004: A comparision of gamma and lognormal distributions for characterizing satellite rain rates from the Tropical Rainfall Measuring Mission. J. Appl. Meteor., 43, 15861597, doi:10.1175/JAM2165.1.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., J.-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-VAR, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 13671387, doi: 10.1002/qj.49712051912.

    • Search Google Scholar
    • Export Citation
  • Crow, E. L., and K. Shimizu, Eds., 1988: Lognormal Distributions: Theory and Applications. CRC Press, 387 pp.

  • Fletcher, S. J., 2010: Mixed lognormal-Gaussian four-dimensional data assimilation. Tellus, 62A, 266287, doi:10.1111/j.1600-0870.2010.00439.x.

    • Search Google Scholar
    • Export Citation
  • Fletcher, S. J., and M. Zupanski, 2006a: A data assimilation method for log-normally distributed observational errors. Quart. J. Roy. Meteor. Soc., 132, 25052519, doi:10.1256/qj.05.222.

    • Search Google Scholar
    • Export Citation
  • Fletcher, S. J., and M. Zupanski, 2006b: A hybrid normal and lognormal distribution for data assimilation. Atmos. Sci. Lett., 7, 4346, doi:10.1002/asl.128.

    • Search Google Scholar
    • Export Citation
  • Fletcher, S. J., and M. Zupanski, 2007: Implications and impacts of transforming lognormal variables into normal variables in VAR. Meteor. Z., 16, 755765, doi:10.1127/0941-2948/2007/0243.

    • Search Google Scholar
    • Export Citation
  • Foster, J., and M. Bevis, 2003: Lognormal distribution of precipitable water in Hawaii. Geochem. Geophys. Geosyst., 4, 1065, doi:10.1029/2002GC000478.

    • Search Google Scholar
    • Export Citation
  • Foster, J., M. Bevis, and W. Raymond, 2006: Precipitable water and the lognormal distribution. J. Geophys. Res.,111, D15102, doi:10.1029/2005JD006731.

  • Gauthier, P., M. Tanguay, S. Laroche, S. Pellering, and J. Morneau, 2007: Extension of 3DVAR To 4DVAR: Implementation of 4DVAR at the Meteorological Service of Canada. Mon. Wea. Rev., 135, 23392354, doi:10.1175/MWR3394.1.

    • Search Google Scholar
    • Export Citation
  • Lopez, P., 2011: Direct 4D-Var assimilation of NCEP stage IV radar and precipitation data at ECMWF. Mon. Wea. Rev., 139, 20982116, doi:10.1175/2010MWR3565.1.

    • Search Google Scholar
    • Export Citation
  • López, R. E., 1977: The lognormal distribution and cumulus cloud populations. Mon. Wea. Rev., 105, 865872, doi:10.1175/1520-0493(1977)105<0865:TLDACC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

  • McKinnon, K. I. M., 1999: Convergence of the Nelder–Mead simplex method to a non-stationary point. SIAM J. Optim., 9, 148–158, doi:10.1137/S1052623496303482.

    • Search Google Scholar
    • Export Citation
  • Mielke, P. W., Jr., J. S. Williams, and S.-C. Wu, 1977: Covariance analysis techniques based on bivariate log-normal distribution with weather modification applications. J. Appl. Meteor., 16, 183187, doi:10.1175/1520-0450(1977)016<0183:CATBOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet size distribution in low-level stratisform clouds. J. Atmos. Sci., 57, 295311, doi:10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Neill, N. T., A. Ignatov, B. N. Holben, and T. F. Eck, 2000: The lognormal distribution as a reference for reporting aerosol optical depth statistics: Empirical tests using multi-year, multi-site AERONET sunphotometer data. Geophys. Res. Lett., 27, 33333336, doi:10.1029/2000GL011581.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 17471763, doi:10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polavarapu, S., S. Ren, Y. Rochon, D. Sankey, N. Ek, J. Koshyk, and D. Tarasick, 2005: Data assimilation with the Candian Middle Atmosphere Model. Atmos.–Ocean, 43, 77100, doi:10.3137/ao.430105.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., H. Jarvinen, E. Klinker, J.-F. Mahfouf, and A. Simmons, 2000: The ECMWF implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126A, 11431170, doi:10.1002/qj.49712656415.

    • Search Google Scholar
    • Export Citation
  • Rawlins, F., S. P. Ballard, K. J. Bovis, A. M. Clayton, D. Li, G. W. Inverarity, A. C. Lorenc, and T. J. Payne, 2007: The Met Office global four-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 133, 347362, doi:10.1002/qj.32.

    • Search Google Scholar
    • Export Citation
  • Rosmond, T., and L. Xu, 2006: Development of NAVDAS-AR: Non-linear formulation and outer loop test. Tellus, 58A, 4558, doi:10.1111/j.1600-0870.2006.00148.x.

    • Search Google Scholar
    • Export Citation
  • Sengupta, M., E. E. Clothiaux, and T. P. Ackerman, 2004: Climatology of warm boundary layer clouds at the ARM SCP site and their comparison to models. J. Climate, 17, 47604782, doi:10.1175/JCLI-3231.1.

    • Search Google Scholar
    • Export Citation
  • Song, H., C. A. Edwards, A. M. Moore, and J. Fiechter, 2012: Incremental four-dimensional variational data assimilation of positive-definite oceanic variables using a logarithm transformation. Ocean Modell., 54–55, 117, doi:10.1016/j.ocemod.2012.06.001.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1282 837 212
PDF Downloads 315 92 4