Quality of the Target Area for Metrics with Different Nonlinearities in a Mesoscale Convective System

Ling Huang Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Ling Huang in
Current site
Google Scholar
PubMed
Close
and
Zhiyong Meng Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Zhiyong Meng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A direct piece-by-piece data assimilation targeting strategy through observing system simulation experiments was used to examine the quality of the target area for forecast metrics with different nonlinearities in a mesoscale convective vortex–associated rainfall event from both a deterministic and probabilistic perspective.

The target area was determined based on the impact of assimilating synthetic wind-profiler observations, piece by piece, on the forecast error of strongly nonlinear rainfall and weakly nonlinear total energy around the initial vortex center. The quality of the target area in terms of its effectiveness and variability was examined for members of a reasonable ensemble. Apparently different target areas were found for different members, even for those with very small differences for both forecast metrics, with a larger variability observed for rainfall than for total energy. This result indicated that target areas estimated in deterministic scenarios are likely unreliable.

Probabilistic target areas were created by averaging data-impact index values over the ensemble. Significant differences were also observed in the ensemble-based target areas for rainfall and total energy. For total energy, assimilating data in an inaccurate target area could decrease the forecast error at a similar magnitude as that in the target area. For rainfall, however, much less error reduction was obtained, the magnitude of which was almost comparable to the no-data-assimilation experiment. Overall, the results of this study suggest that designing a particular observation plan based on an estimated target area could be unnecessary for total energy and useless for rainfall, given the difficulty involved in accurately determining a target area in an operational setting.

Corresponding author address: Dr. Zhiyong Meng, Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, 209 Chengfu Rd., Haidian District, Beijing 100871, China. E-mail: zymeng@pku.edu.cn

Abstract

A direct piece-by-piece data assimilation targeting strategy through observing system simulation experiments was used to examine the quality of the target area for forecast metrics with different nonlinearities in a mesoscale convective vortex–associated rainfall event from both a deterministic and probabilistic perspective.

The target area was determined based on the impact of assimilating synthetic wind-profiler observations, piece by piece, on the forecast error of strongly nonlinear rainfall and weakly nonlinear total energy around the initial vortex center. The quality of the target area in terms of its effectiveness and variability was examined for members of a reasonable ensemble. Apparently different target areas were found for different members, even for those with very small differences for both forecast metrics, with a larger variability observed for rainfall than for total energy. This result indicated that target areas estimated in deterministic scenarios are likely unreliable.

Probabilistic target areas were created by averaging data-impact index values over the ensemble. Significant differences were also observed in the ensemble-based target areas for rainfall and total energy. For total energy, assimilating data in an inaccurate target area could decrease the forecast error at a similar magnitude as that in the target area. For rainfall, however, much less error reduction was obtained, the magnitude of which was almost comparable to the no-data-assimilation experiment. Overall, the results of this study suggest that designing a particular observation plan based on an estimated target area could be unnecessary for total energy and useless for rainfall, given the difficulty involved in accurately determining a target area in an operational setting.

Corresponding author address: Dr. Zhiyong Meng, Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, 209 Chengfu Rd., Haidian District, Beijing 100871, China. E-mail: zymeng@pku.edu.cn
Save
  • Aberson, S. D., 2002: Two years of operational hurricane synoptic surveillance. Wea. Forecasting, 17, 11011110, doi:10.1175/1520-0434(2002)017<1101:TYOOHS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Aberson, S. D., 2003: Targeted observations to improve operational tropical cyclone track forecast guidance. Mon. Wea. Rev.,131, 1613–1628, doi:10.1175//2550.1.

  • Aberson, S. D., 2008: Large forecast degradation due to synoptic surveillance during the 2004 and 2005 hurricane seasons. Mon. Wea. Rev., 136, 31383150, doi:10.1175/2007MWR2192.1.

    • Search Google Scholar
    • Export Citation
  • Aberson, S. D., 2011: The impact of dropwindsonde data from the THORPEX Pacific Area Regional Campaign and the NOAA hurricane field program on tropical cyclone forecasts in the global forecast system. Mon. Wea. Rev., 139, 26892703, doi:10.1175/2011MWR3634.1.

    • Search Google Scholar
    • Export Citation
  • Aberson, S. D., S. J. Majumdar, C. A. Reynolds, and B. J. Etherton, 2011: An observing system experiment for tropical cyclone targeting techniques using the global forecast system. Mon. Wea. Rev., 139, 895907, doi:10.1175/2010MWR3397.1.

    • Search Google Scholar
    • Export Citation
  • Ancell, B., and C. Mass, 2006: Structure, growth rates, and tangent linear accuracy of adjoint sensitivities with respect to horizontal and vertical resolution. Mon. Wea. Rev., 134, 29712988, doi:10.1175/MWR3227.1.

    • Search Google Scholar
    • Export Citation
  • Ancell, B., and G. J. Hakim, 2007: Comparing adjoint- and ensemble sensitivity analysis with applications to observation targeting. Mon. Wea. Rev., 135, 41174134, doi:10.1175/2007MWR1904.1.

    • Search Google Scholar
    • Export Citation
  • Ancell, B., and C. Mass, 2008: The variability of adjoint sensitivity with respect to model physics and basic-state trajectory. Mon. Wea. Rev., 136, 46124628, doi:10.1175/2008MWR2517.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barker, D., 2005: Southern high-latitude ensemble data assimilationin the Antarctic Mesoscale Prediction System. Mon. Wea. Rev., 133, 34313449, doi:10.1175/MWR3042.1.

    • Search Google Scholar
    • Export Citation
  • Barker, D., W. Huang, Y. Guo, A. Bourgeois, and Q. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914, doi:10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berliner, L. M., Z. Lu, and C. Snyder, 1999: Statistical design for adaptive weather observations. J. Atmos. Sci., 56, 25362552, doi:10.1175/1520-0469(1999)056<2536:SDFAWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bishop, C., and Z. Toth, 1999: Ensemble transformation and adaptive observations. J. Atmos. Sci., 56, 17481765, doi:10.1175/1520-0469(1999)056<1748:ETAAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bishop, C., B. Etherton, and S. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436, doi:10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., and T. Palmer, 1995: The singular-vector structure of the atmospheric global circulation. J. Atmos. Sci., 52, 14341456, doi:10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and F. Wang, 2000: Analysis of measurement precision of wind profiler (in Chinese with English abstract). Modern Radar, 22, 1113.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., M. Xu, W. Min, and Q. Miao, 2003: Relationship between abnormal activities of southwest vortex and heavy rain the upper reach of Yangtze river during summer of 1998 (in Chinese with English abstract). Plateau Meteor., 22, 162167.

    • Search Google Scholar
    • Export Citation
  • Chou, K., C. Wu, P. Lin, S. Aberson, M. Weissmann, F. Harnisch, and T. Nakazawa, 2011: The impact of dropwindsonde observations on typhoon track forecasts in DOTSTAR and T-PARC. Mon. Wea. Rev., 139, 17281743, doi:10.1175/2010MWR3582.1.

    • Search Google Scholar
    • Export Citation
  • Coutinho, M., J. Hoskins, and R. Buizza, 2004: The influence of physical processes on extratropical singular vectors. J. Atmos. Sci., 61, 195209, doi:10.1175/1520-0469(2004)061<0195:TIOPPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duan, L., 2006: Relationship between frequency of moving direction of southwest vortex and rainfall in flood season (in Chinese with English abstract). Meteor. Monogr., 32, 2327.

    • Search Google Scholar
    • Export Citation
  • Fu, S. M., S. Zhao, J. Sun, and W. Li, 2010: One kind of vortex causing heavy rainfall during pre-rainy season in South China. Chin. J. Atmos. Sci., 34, 235252.

    • Search Google Scholar
    • Export Citation
  • Gao, J., and Coauthors, 2013: A real-time weather-adaptive 3DVAR analysis system for severe weather detections and warnings. Wea. Forecasting, 28, 727745, doi:10.1175/WAF-D-12-00093.1.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., T. Rosmond, and R. Daley, 2002: Singular vector calculations with an analysis error variance metric. Mon. Wea. Rev., 130, 11661186, doi:10.1175/1520-0493(2002)130<1166:SVCWAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grell, G., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29 (14), doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Hamill, T., and C. Snyder, 2002: Using improved background-error covariances from an ensemble Kalman filter for adaptive observations. Mon. Wea. Rev., 130, 15521572, doi:10.1175/1520-0493(2002)130<1552:UIBECF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T., F. Yang, C. Cardinali, and S. Majumdar, 2013: Impact of targeted winter storm reconnaissance dropwindsonde data on midlatitude numerical weather predictions. Mon. Wea. Rev., 141, 20582065, doi:10.1175/MWR-D-12-00309.1.

    • Search Google Scholar
    • Export Citation
  • Harnisch, F., and M. Weissmann, 2010: Sensitivity of typhoon forecasts to different subsets of targeted dropsonde observations. Mon. Wea. Rev., 138, 26642680, doi:10.1175/2010MWR3309.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S., J. Dudhia, and S. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P., H. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Speak, and B. Hansen, 2005: Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Wea. Rev., 133, 604620, doi:10.1175/MWR-2864.1.

    • Search Google Scholar
    • Export Citation
  • Hsiao, L.-F., D.-S. Chen, Y.-H. Kuo, Y.-R. Guo, T.-C. Yeh, J.-S. Hong, C.-T. Fong, and C.-S. Lee, 2012: Application of WRF 3DVAR to operational typhoon prediction in Taiwan: Impact of outer loop and partial cycling approaches. Wea. Forecasting, 27, 12491263, doi:10.1175/WAF-D-11-00131.1.

    • Search Google Scholar
    • Export Citation
  • Joly, A., and Coauthors, 1997: The Fronts and Atlantic Storm-Track Experiment (FASTEX): Scientific objectives and experimental design. Bull. Amer. Meteor. Soc., 78, 19171940, doi:10.1175/1520-0477(1997)078<1917:TFAAST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, H., S.-M. Kim, and B.-J. Jung, 2011: Real-time adaptive observation guidance using singular vectors for Typhoon Jangmi (200815) in T-PARC 2008. Wea. Forecasting, 26, 634649, doi:10.1175/WAF-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Langland, R., 1999: Workshop on targeted observations for extratropical and tropical forecasting. Bull. Amer. Meteor. Soc., 80, 23312338, doi:10.1175/1520-0477(1999)080<2331:WOTOFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Langland, R., 2005: Issues in targeted observing. Quart. J. Roy. Meteor. Soc., 131, 34093425, doi:10.1256/qj.05.130.

  • Langland, R., and G. Rohaly, 1996: Adjoint-based targeting of observations for FASTEX cyclones. Preprints, Seventh Conf. on Mesoscale Processes, Reading, United Kingdom, Amer. Meteor. Soc., 369–371.

  • Liu, J., and E. Kalnay, 2008: Estimating observation impact without adjoint model in an ensemble Kalman filter. Quart. J. Roy. Meteor. Soc., 134, 13271335, doi:10.1002/qj.280.

    • Search Google Scholar
    • Export Citation
  • Lu, J., and G. Chen, 1993: Some basic facts about the southwest China vortex and their prelimiary analysis. J. Chengdu Inst. Meteor., 27 (4), 715.

    • Search Google Scholar
    • Export Citation
  • Majumdar, S. J., C. Bishop, B. Etherton, and Z. Toth, 2002a: Adaptive sampling with the ensemble transform Kalman filter. Part II: Filed program implementation. Mon. Wea. Rev., 130, 13561369, doi:10.1175/1520-0493(2002)130<1356:ASWTET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majumdar, S. J., C. Bishop, R. Buizza, and R. Gelaro, 2002b: A comparison of ensemble-transform Kalman-filter targeting guidance with ECMWF and NRL total-energy singular vector guidance. Quart. J. Roy. Meteor. Soc., 128, 25272549, doi:10.1256/qj.01.214.

    • Search Google Scholar
    • Export Citation
  • Majumdar, S. J., S. Aberson, C. Bishop, R. Buizza, M. Peng, and C. Reynolds, 2006: A comparison of adaptive observing guidance for Atlantic tropical cyclones. Mon. Wea. Rev., 134, 23542372, doi:10.1175/MWR3193.1.

    • Search Google Scholar
    • Export Citation
  • Mansfield, D., D. Richardson, and B. Truscott, 2005: An overview of the Atlantic THORPEX Regional Campaign, A-TRec. Proc. THORPEX Science Symp., Montreal, Canada, World Meteorological Organization, 9194.

  • Meng, Z., and F. Zhang, 2007: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Mon. Wea. Rev., 135, 14031423, doi:10.1175/MWR3352.1.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2008a: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3DVar for a real-data case study. Mon. Wea. Rev., 136, 522540, doi:10.1175/2007MWR2106.1.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2008b: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part IV: Comparison with 3DVar in a month-long experiment. Mon. Wea. Rev., 136, 36713682, doi:10.1175/2008MWR2270.1.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2011: Limited-area ensemble-based data assimilation. Mon. Wea. Rev., 139, 20252045, doi:10.1175/2011MWR3418.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Mu, M., 2013: Methods, current status, and prospect of targeted observation. Sci. China: Earth Sci., 56, 19972005, doi:10.1007/s11430-013-4727-x.

    • Search Google Scholar
    • Export Citation
  • Mu, M., W. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Processes Geophys., 10, 493501, doi:10.5194/npg-10-493-2003.

    • Search Google Scholar
    • Export Citation
  • Mu, M., F. Zhou, and H. Wang, 2009: A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction: Conditional nonlinear optimal perturbation. Mon. Wea. Rev., 137, 16231639, doi:10.1175/2008MWR2640.1.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., R. Gelaro, J. Barkmeijer, and R. Buizza, 1998: Singular vectors, metrics, and adaptive observations. J. Atmos. Sci., 55, 633653, doi:10.1175/1520-0469(1998)055<0633:SVMAAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical interpolation analysis system. Mon. Wea. Rev., 120, 17471763, doi:10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pu, Z. X., E. Kalnay, J. Sela, and I. Szunyogh, 1997: Sensitivity of forecast errors to initial conditions with a quasi-inverse linear method. Mon. Wea. Rev., 125, 24792503, doi:10.1175/1520-0493(1997)125<2479:SOFETI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qin, X., and M. Mu, 2011: A study on the reduction of forecast error variance by three adaptive observation approaches for tropical cyclone prediction. Mon. Wea. Rev., 139, 22182232, doi:10.1175/2010MWR3327.1.

    • Search Google Scholar
    • Export Citation
  • Reynolds, C., and T. Rosmond, 2003: Nonlinear growth of singular-vector-based perturbations. Quart. J. Roy. Meteor. Soc., 129, 30593078, doi:10.1256/qj.02.193.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Snyder, C., 1996: Summary of a workshop on adaptive observation and FASTEX. Bull. Amer. Meteor. Soc., 77, 953961.

  • Szunyogh, I., Z. Toth, R. Morss, S. Majumdar, B. Etherton, and C. Bishop, 2000: The effect of targeted dropsonde observations during the 1999 Winter Storm Reconnaissance Program. Mon. Wea. Rev., 128, 35203537, doi:10.1175/1520-0493(2000)128<3520:TEOTDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, S., and Y. Ding, 1981: Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc., 62, 2330, doi:10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C., and Coauthors, 2005: Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR): An overview. Bull. Amer. Meteor. Soc., 86, 787790, doi:10.1175/BAMS-86-6-787.

    • Search Google Scholar
    • Export Citation
  • Wu, C., K. Chou, P. Lin, S. Aberson, M. Peng, and T. Nakazawa, 2007a: The impact of dropwindsonde data on typhoon track forecasts in DOTSTAR. Wea. Forecasting, 22, 11571176, doi:10.1175/2007WAF2006062.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C., J. Chen, P. Lin, and K. Chou, 2007b: Targeted observations of tropical cyclone movement based on the adjoint-derived sensitivity steering vector. J. Atmos. Sci., 64, 26112626, doi:10.1175/JAS3974.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C., S.-G. Chen, J.-H. Chen, K.-H. Chou, and P.-H. Lin, 2009: Interaction of Typhoon Shanshan (2006) with the midlatitude trough from both adjoint-derived sensitivity steering vector and potential vorticity perspectives. Mon. Wea. Rev., 137, 852862, doi:10.1175/2008MWR2585.1.

    • Search Google Scholar
    • Export Citation
  • Wu, D., Z. Meng, and D. Yan, 2013: The predictability of a squall line in South China on 23 April 2007. Adv. Atmos. Sci., 30, 485502, doi:10.1007/s00376-012-2076-x.

    • Search Google Scholar
    • Export Citation
  • Xie, B., F. Zhang, Q. Zhang, J. Poterjoy, and Y. Weng, 2013: Observing strategy and observation targeting for tropical cyclones using ensemble-based sensitivity analysis and data assimilation. Mon. Wea. Rev., 141, 14371453, doi:10.1175/MWR-D-12-00188.1.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, M., T. Iriguchi, T. Nakazawa, and C. Wu, 2009: An observing system experiment for Typhoon Conson (2004) using a singular vector method and DOTSTAR data. Mon. Wea. Rev., 137, 28012816, doi:10.1175/2009MWR2683.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 11731185, doi:10.1175/1520-0469(2003)060<1173:EOMCOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Z. Meng, and A. Aksoy, 2006: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiments. Mon. Wea. Rev., 134, 722736, doi:10.1175/MWR3101.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2094 1514 557
PDF Downloads 168 52 7