Utility of Dense Pressure Observations for Improving Mesoscale Analyses and Forecasts

Luke E. Madaus Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Luke E. Madaus in
Current site
Google Scholar
PubMed
Close
,
Gregory J. Hakim Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Gregory J. Hakim in
Current site
Google Scholar
PubMed
Close
, and
Clifford F. Mass Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Clifford F. Mass in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The use of dense pressure observations is investigated for creating mesoscale ensemble analyses and improving short-term mesoscale forecasts. By exploiting additional observation platforms, the number of pressure observations over the Pacific Northwest region is increased by an order of magnitude over standard airport observations. Quality control and bias correction methods for these observations are discussed, including the use of pressure tendency as an alternative observation type with fewer bias concerns. The enhanced station density provided by these observations contributes to localized adjustments for a variety of mesoscale phenomena. These adjusted analyses yield improved forecasts, including more accurate forecasts of frontal passages and convective bands. Assimilating dense 3-h pressure tendency observations also reduces the error in some forecast surface fields similarly to raw pressure observations, suggesting further investigation into pressure tendency as a mesoscale observation type.

Corresponding author address: Luke Madaus, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195. E-mail: lmadaus@atmos.washington.edu

Abstract

The use of dense pressure observations is investigated for creating mesoscale ensemble analyses and improving short-term mesoscale forecasts. By exploiting additional observation platforms, the number of pressure observations over the Pacific Northwest region is increased by an order of magnitude over standard airport observations. Quality control and bias correction methods for these observations are discussed, including the use of pressure tendency as an alternative observation type with fewer bias concerns. The enhanced station density provided by these observations contributes to localized adjustments for a variety of mesoscale phenomena. These adjusted analyses yield improved forecasts, including more accurate forecasts of frontal passages and convective bands. Assimilating dense 3-h pressure tendency observations also reduces the error in some forecast surface fields similarly to raw pressure observations, suggesting further investigation into pressure tendency as a mesoscale observation type.

Corresponding author address: Luke Madaus, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195. E-mail: lmadaus@atmos.washington.edu
Save
  • Ancell, B., 2012: Examination of analysis and forecast errors of high-resolution assimilation, bias removal, and digital filter initialization with an ensemble Kalman filter. Mon. Wea. Rev., 140, 3992–4004, doi:10.1175/MWR-D-11-00319.1.

    • Search Google Scholar
    • Export Citation
  • Ancell, B., C. Mass, and G. Hakim, 2011: Evaluation of surface analyses and forecasts with a multiscale ensemble Kalman filter in regions of complex terrain. Mon. Wea. Rev., 139, 2008–2024, doi:10.1175/2010MWR3612.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2007a: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A, 210–224, doi:10.1111/j.1600-0870.2006.00216.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2007b: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter. Physica D, 230, 99–111, doi:10.1016/j.physd.2006.02.011.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., B. Wyman, S. Zhang, and T. Hoar, 2005: Assimilation of surface pressure observations using an ensemble filter in an idealized global atmospheric prediction system. J. Atmos. Sci., 62, 2925–2938, doi:10.1175/JAS3510.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 1283–1296, doi:10.1175/2009BAMS2618.1.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S., B. Schwartz, and R. Cole, 1999: Accuracy of ACARS wind and temperature observations determined by collocation. Wea. Forecasting, 14, 1032–1038, doi:10.1175/1520-0434(1999)014<1032:AOAWAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • COESA, 1976: U.S. Standard Atmosphere, 1976. NOAA, 227 pp.

  • Colle, B., C. Mass, and D. Ovens, 2001: Evolution of the timing and strength of MM5 and Eta surface trough passages over the eastern Pacific. Wea. Forecasting, 16, 553–572, doi:10.1175/1520-0434(2001)016<0553:EOTTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 1–28, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Dirren, S., R. Torn, and G. Hakim, 2007: A data assimilation case study using a limited-area ensemble filter. Mon. Wea. Rev., 135, 1455–1473, doi:10.1175/MWR3358.1.

    • Search Google Scholar
    • Export Citation
  • Eckel, F., and C. Mass, 2005: Aspects of effective mesoscale, short-range ensemble forecasting. Wea. Forecasting, 20, 328–350, doi:10.1175/WAF843.1.

    • Search Google Scholar
    • Export Citation
  • Engerer, N., D. Stensrud, and M. Coniglio, 2008: Surface characteristics of observed cold pools. Mon. Wea. Rev., 136, 4839–4849, doi:10.1175/2008MWR2528.1.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723–757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Goff, R. C., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104, 1429–1440, doi:10.1175/1520-0493(1976)104<1429:VSOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hanley, K., D. Kirshbaum, N. Roberts, and G. Leoncini, 2013: Sensitivities of a squall line over central Europe in a convective-scale ensemble. Mon. Wea. Rev., 141, 112–133, doi:10.1175/MWR-D-12-00013.1.

    • Search Google Scholar
    • Export Citation
  • Janjic, T., and S. Cohn, 2006: Treatment of observation error due to unresolved scales in atmospheric data assimilation. Mon. Wea. Rev., 134, 2900–2915, doi:10.1175/MWR3229.1.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., 1981: Topographically forced convergence in western Washington state. Mon. Wea. Rev., 109, 1335–1347, doi:10.1175/1520-0493(1981)109<1335:TFCIWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., and G. Ferber, 1990: Surface pressure perturbations produced by an isolated mesoscale topographic barrier. Part I: General characteristics and dynamics. Mon. Wea. Rev., 118, 2579–2596, doi:10.1175/1520-0493(1990)118<2579:SPPPBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., J. Baars, G. Wedam, E. Grimit, and R. Steed, 2008: Removal of systematic model bias on a model grid. Wea. Forecasting, 23, 438–459, doi:10.1175/2007WAF2006117.1.

    • Search Google Scholar
    • Export Citation
  • Melhauser, C., and F. Zhang, 2012: Practical and intrinsic predictability of severe and convective weather at the mesoscales. J. Atmos. Sci., 69, 3350–3371, doi:10.1175/JAS-D-11-0315.1.

    • Search Google Scholar
    • Export Citation
  • Miller, P., M. Barth, and L. Morone, cited 2002: RSAS technical procedures bulletin. [Available online at http://msas.noaa.gov/rsas_tpb.html.]

  • Roebber, P., D. Schultz, B. Colle, and D. Stensrud, 2004: Toward improved prediction: High-resolution and ensemble modeling systems in operations. Wea. Forecasting, 19, 936–949, doi:10.1175/1520-0434(2004)019<0936:TIPHAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. Tech. Rep. NCAR/TN-475+STR, National Center for Atmospheric Research, Boulder, CO, 125 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Torn, R., and G. Hakim, 2008: Performance characteristics of a pseudo-operational ensemble Kalman filter. Mon. Wea. Rev., 136, 3947–3963, doi:10.1175/2008MWR2443.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R., G. Hakim, and C. Snyder, 2006: Boundary conditions for limited-area ensemble Kalman filters. Mon. Wea. Rev., 134, 2490–2502, doi:10.1175/MWR3187.1.

    • Search Google Scholar
    • Export Citation
  • Wheatley, D., and D. Stensrud, 2010: The impact of assimilating surface pressure observations on severe weather events in a WRF mesoscale system. Mon. Wea. Rev., 138, 1673–1694, doi:10.1175/2009MWR3042.1.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., G. P. Compo, X. Wei, and T. M. Hamill, 2004: Reanalysis without radiosondes using ensemble data assimilation. Mon. Wea. Rev., 132, 1190–1200, doi:10.1175/1520-0493(2004)132<1190:RWRUED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1538 1173 417
PDF Downloads 224 64 4