A Numerical Study on the Combined Effect of Midlatitude and Low-Latitude Systems on the Abrupt Track Deflection of Typhoon Megi (2010)

Wenli Shi College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing, China

Search for other papers by Wenli Shi in
Current site
Google Scholar
PubMed
Close
,
Jianfang Fei College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing, China

Search for other papers by Jianfang Fei in
Current site
Google Scholar
PubMed
Close
,
Xiaogang Huang College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing, China

Search for other papers by Xiaogang Huang in
Current site
Google Scholar
PubMed
Close
,
Xiaoping Cheng College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing, China

Search for other papers by Xiaoping Cheng in
Current site
Google Scholar
PubMed
Close
,
Juli Ding College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing, China

Search for other papers by Juli Ding in
Current site
Google Scholar
PubMed
Close
, and
Yiqiang He Beijing Aerospace Control Center, Beijing, China

Search for other papers by Yiqiang He in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In 2010, Supertyphoon Megi experienced an abrupt track deflection in the South China Sea (SCS) after traversing Luzon Island. To reveal the physical processes responsible for the timing and location of the sudden track deflection, the potential vorticity (PV) diagnosis and numerical simulations with initial strength perturbations are applied to investigate the individual and combined effects of environmental systems on Megi’s motion based on the steering flow theory. Results indicate that Megi’s northward track deflection was mainly determined by the effect of the midlatitude circulation, or rather, the break of the high pressure belt joined by the continental high (CH) and the Pacific subtropical high (SH). The retraction of CH played a particularly critical role in the break of the high pressure belt, making it the most important feature of the midlatitude circulation to determine Megi’s deflection. In addition, a small low-latitude anticyclone (SA) southeast of Megi was crucial in affecting the timing and location of the deflection, although the steering effect provided by SA itself was relatively weak. The development of SA was associated with both the tropical cyclone energy dispersion and the activity of an easterly wave. This study suggests that the abrupt track deflection of Megi was attributed to the combined effect of the midlatitude and low-latitude systems, in addition to the combined effects of the large-scale and small-scale systems.

Corresponding author address: Xiaogang Huang, College of Meteorology and Oceanography, PLA University of Science and Technology, No. 60, Shuanglong Rd., Nanjing 211101, China. E-mail: huang.x.g@163.com

Abstract

In 2010, Supertyphoon Megi experienced an abrupt track deflection in the South China Sea (SCS) after traversing Luzon Island. To reveal the physical processes responsible for the timing and location of the sudden track deflection, the potential vorticity (PV) diagnosis and numerical simulations with initial strength perturbations are applied to investigate the individual and combined effects of environmental systems on Megi’s motion based on the steering flow theory. Results indicate that Megi’s northward track deflection was mainly determined by the effect of the midlatitude circulation, or rather, the break of the high pressure belt joined by the continental high (CH) and the Pacific subtropical high (SH). The retraction of CH played a particularly critical role in the break of the high pressure belt, making it the most important feature of the midlatitude circulation to determine Megi’s deflection. In addition, a small low-latitude anticyclone (SA) southeast of Megi was crucial in affecting the timing and location of the deflection, although the steering effect provided by SA itself was relatively weak. The development of SA was associated with both the tropical cyclone energy dispersion and the activity of an easterly wave. This study suggests that the abrupt track deflection of Megi was attributed to the combined effect of the midlatitude and low-latitude systems, in addition to the combined effects of the large-scale and small-scale systems.

Corresponding author address: Xiaogang Huang, College of Meteorology and Oceanography, PLA University of Science and Technology, No. 60, Shuanglong Rd., Nanjing 211101, China. E-mail: huang.x.g@163.com
Save
  • Berger, H., R. Langland, C. S. Velden, C. A. Reynolds, and P. M. Pauley, 2011: Impact of enhanced satellite-derived atmospheric motion vector observations on numerical tropical cyclone track forecasts in the western North Pacific during TPARC/TCS-08. J. Appl. Meteor. Climatol., 50, 23092318, doi:10.1175/JAMC-D-11-019.1.

    • Search Google Scholar
    • Export Citation
  • Carr, L. E., and R. L. Elsberry, 1990: Observational evidence for predictions of tropical cyclone propagation relative to environmental steering. J. Atmos. Sci., 47, 542548, doi:10.1175/1520-0469(1990)047<0542:OEFPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carr, L. E., and R. L. Elsberry, 1998: Objective diagnosis of binary tropical cyclone interactions for the western North Pacific basin. Mon. Wea. Rev., 126, 17341740, doi:10.1175/1520-0493(1998)126<1734:ODOBTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carr, L. E., and R. L. Elsberry, 2000a: Dynamical tropical cyclone track forecast errors. Part I: Tropical region error sources. Wea. Forecasting, 15, 641661, doi:10.1175/1520-0434(2000)015<0641:DTCTFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carr, L. E., and R. L. Elsberry, 2000b: Dynamical tropical cyclone track forecast errors. Part II: Midlatitude circulation influences. Wea. Forecasting, 15, 662681, doi:10.1175/1520-0434(2000)015<0662:DTCTFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carr, L. E., M. A. Boothe, and R. L. Elsberry, 1997: Observational evidence for alternate modes of track-altering binary tropical cyclone scenarios. Mon. Wea. Rev., 125, 20942111, doi:10.1175/1520-0493(1997)125<2094:OEFAMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C., and W. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 13541374, doi:10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1955: The use of primitive equations of motion in numerical prediction. Tellus, 7, 2226, doi:10.1111/j.2153-3490.1955.tb01138.x.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev.,119, 1925–1953, doi:10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

  • Dong, K. Q., G. J. Holland, and B. C. Diehl, 1991: Typhoon recurvature and environmental circulation features. WMO Tech. Doc. WMO/TD-472, World Meteorological Organization, Geneva, Switzerland, 16–22.

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., 1995: Tropical cyclone motion. Global Perspectives on Tropical Cyclones, R. L. Elsberry, Ed., WMO Tech. Doc. WMO/TD-693, World Meteorological Organization, Geneva, Switzerland, 106–197.

  • Galarneau, T. J., and C. A. Davis, 2013: Diagnosing forecast errors in tropical cyclone motion. Mon. Wea. Rev., 141, 405–430, doi:10.1175/MWR-D-12-00071.1.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 1991: Tropical cyclone track characteristics as a function of large-scale circulation anomalies. Mon. Wea. Rev., 119, 14481468, doi:10.1175/1520-0493(1991)119<1448:TCTCAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 1995: Large-scale circulation variability over the tropical western North Pacific. Part I: Spatial patterns and tropical cyclone characteristics. Mon. Wea. Rev., 123, 12251246, doi:10.1175/1520-0493(1995)123<1225:LSCVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical di¤usion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Japan Meteorological Agency, 2012: Annual Report on the Activities of the RSMC Tokyo-Typhoon Center 2011. Japan Meteorological Agency, 82 pp. [Available online at http://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/AnnualReport/2011/Text/Text2011.pdf.]

  • Jian, G.-J., and C.-C. Wu, 2008: A numerical study of the track deflection of Supertyphoon Haitang (2005). Mon. Wea. Rev., 136, 598615, doi:10.1175/2007MWR2134.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kehoe, R. M., M. A. Boothe, and R. L. Elsberry, 2007: Dynamical tropical cyclone 96- and 120-h track forecast errors in the western North Pacific. Wea. Forecasting, 22, 520538, doi:10.1175/WAF1002.1.

    • Search Google Scholar
    • Export Citation
  • Kieu, C., T. Nguyen, M. Hoang, and T. Ngo-Duc, 2012: Sensitivity of the track and intensity forecasts of Typhoon Megi (2010) to satellite-derived atmospheric motion vectors with the ensemble Kalman filter. J. Atmos. Oceanic Technol., 29, 17941810, doi:10.1175/JTECH-D-12-00020.1.

    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., S. J. Majumdar, and E. D. Rappin, 2011: Diagnosing initial condition sensitivity of Typhoon Sinlaku (2008) and Hurricane Ike (2008). Mon. Wea. Rev., 139, 32243242, doi:10.1175/MWR-D-10-05018.1.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1990: Prediction experiments of Hurricane Gloria (1985) using a multiply nested movable mesh model. Mon. Wea. Rev., 118, 21852198, doi:10.1175/1520-0493(1990)118<2185:PEOHGU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 20302045, doi:10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lander, M. A., 1996: Specific tropical cyclone track types and unusual tropical cyclone motions associated with a reverse-oriented monsoon trough in the western North Pacific. Wea. Forecasting, 11, 170186, doi:10.1175/1520-0434(1996)011<0170:STCTTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, T., and B. Fu, 2006: Tropical cyclogenesis associated with Rossby wave energy dispersion of a preexisting typhoon. Part I: Satellite data analyses. J. Atmos. Sci., 63, 13771389, doi:10.1175/JAS3692.1.

    • Search Google Scholar
    • Export Citation
  • Luo, Z. X., N. E. Davidson, F. Ping, and Weican Zhou, 2011: Multiple-scale interactions affecting tropical cyclone track change. Adv. Mech. Eng., 2011, 19, doi:10.1155/2011/782590.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the long wave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Neumann, C. J., 1992: Final report: Joint Typhoon Warning Center (JTWC92) model. SAIC Contract Rep. N00014-90-C-6042 (Part 2), 83 pp.

  • Patla, J. E., D. Stevens, and G. M. Barnes, 2009: A conceptual model for the influence of TUTT cells on tropical cyclone motion in the Northwest Pacific Ocean. Wea. Forecasting, 24, 12151235, doi:10.1175/2009WAF2222181.1.

    • Search Google Scholar
    • Export Citation
  • Pike, A. C., 1985: Geopotential heights and thicknesses as predictors of Atlantic tropical cyclone motion and intensity. Mon. Wea. Rev., 113, 931940, doi:10.1175/1520-0493(1985)113<0931:GHATAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395419, doi:10.1175/2008WAF2222128.1.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., and R. J. Shafer, 1944: The recurvature of tropical storms. J. Meteor., 1, 4254, doi:10.1175/1520-0469(1944)001<0001:TROTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and C. A. Davis, 2012: The influence of shallow convection on tropical cyclone track forecasts. Mon. Wea. Rev., 140, 21882197, doi:10.1175/MWR-D-11-00246.1.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and L. M. Leslie, 1991: The basic relationship between tropical cyclone intensity and the depth of the environmental steering layer in the Australian region. Wea. Forecasting, 6, 244253, doi:10.1175/1520-0434(1991)006<0244:TBRBTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and K. A. Emanuel, 1995a: Potential vorticity diagnostics of hurricane movement. Part I: A case study of Hurricane Bob (1991). Mon. Wea. Rev., 123, 6992, doi:10.1175/1520-0493(1995)123<0069:PVDOHM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and K. A. Emanuel, 1995b: Potential vorticity diagnostics of hurricane movement. Part II: Tropical Storm Ana (1991) and Hurricane Andrew (1992). Mon. Wea. Rev., 123, 93109, doi:10.1175/1520-0493(1995)123<0093:PVDOHM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., T. S. Huang, W. P. Huang, and K. H. Chou, 2003: A new look at the binary interaction: Potential vorticity diagnosis of the unusual southward movement of Tropical Storm Bopha (2000) and its interaction with Supertyphoon Saomai (2000). Mon. Wea. Rev., 131, 12891300, doi:10.1175/1520-0493(2003)131<1289:ANLATB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., T. S. Huang, and K. H. Chou, 2004: Potential vorticity diagnosis of the key factors affecting the motion of Typhoon Sinlaku (2002). Mon. Wea. Rev., 132, 20842093, doi:10.1175/1520-0493(2004)132<2084:PVDOTK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., S. G. Chen, C. C. Yang, P. H. Lin, and S. D. Aberson, 2012: Potential vorticity diagnosis of the factors affecting the track of Typhoon Sinlaku (2008) and the impact from dropwindsonde data during T-PARC. Mon. Wea. Rev., 140, 26702688, doi:10.1175/MWR-D-11-00229.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., H. Zong, and J. Liang, 2011: Observational analysis of sudden tropical cyclone track changes in the vicinity of the East China Sea. J. Atmos. Sci., 68, 30123031, doi:10.1175/2010JAS3559.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1236 654 245
PDF Downloads 454 87 11