A High-Resolution Lightning Map of the State of Colorado

Brandon J. Vogt University of Colorado Colorado Springs, Colorado Springs, Colorado

Search for other papers by Brandon J. Vogt in
Current site
Google Scholar
PubMed
Close
and
Stephen J. Hodanish NOAA/National Weather Service, Pueblo, Colorado

Search for other papers by Stephen J. Hodanish in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

For the state of Colorado, 10 years (2003–12) of 1 April–31 October cloud-to-ground (CG) lightning stroke data are mapped at 500-m spatial resolution over a 10-m spatial resolution U.S. Geological Survey (USGS) digital elevation model (DEM). Spatially, the 12.5 million strokes that are analyzed represent ground contacts, but translate to density values that are about twice the number of ground contacts. Visual interpretation of the mapped data reveals the general lightning climatology of the state, while geospatial analyses that quantify lightning activity by elevation identify certain topographic influences of Colorado’s physical landscape. Elevations lower than 1829 m (6000 ft) and above 3200 m (10 500 ft) show a positive relationship between lightning activity and elevation, while the variegated topography that lies between these two elevations is characterized by a fluctuating relationship. Though many topographic controls are elucidated through the mappings and analyses, the major finding of this paper is the sharp increase in stroke density observed above 3200 m (10 500 ft). Topography’s role in this rapid surge in stroke density, which peaks in the highest mountain summits, is not well known, and until now, was not well documented in the refereed literature at such high resolution from a long-duration dataset.

Corresponding author address: Brandon J. Vogt, Geography and Environmental Studies, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918. E-mail: bvogt@uccs.edu

Abstract

For the state of Colorado, 10 years (2003–12) of 1 April–31 October cloud-to-ground (CG) lightning stroke data are mapped at 500-m spatial resolution over a 10-m spatial resolution U.S. Geological Survey (USGS) digital elevation model (DEM). Spatially, the 12.5 million strokes that are analyzed represent ground contacts, but translate to density values that are about twice the number of ground contacts. Visual interpretation of the mapped data reveals the general lightning climatology of the state, while geospatial analyses that quantify lightning activity by elevation identify certain topographic influences of Colorado’s physical landscape. Elevations lower than 1829 m (6000 ft) and above 3200 m (10 500 ft) show a positive relationship between lightning activity and elevation, while the variegated topography that lies between these two elevations is characterized by a fluctuating relationship. Though many topographic controls are elucidated through the mappings and analyses, the major finding of this paper is the sharp increase in stroke density observed above 3200 m (10 500 ft). Topography’s role in this rapid surge in stroke density, which peaks in the highest mountain summits, is not well known, and until now, was not well documented in the refereed literature at such high resolution from a long-duration dataset.

Corresponding author address: Brandon J. Vogt, Geography and Environmental Studies, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918. E-mail: bvogt@uccs.edu
Save
  • Barker Schaaf, C., J. Wurman, and R. M. Banta, 1988: Thunderstorm-producing terrain features. Bull. Amer. Meteor. Soc., 69, 272277, doi:10.1175/1520-0477(1988)069<0272:TPTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., K. L. Cummins, H. J. Christian, and S. J. Goodman, 2001: Combined satellite- and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev., 129, 108122, doi:10.1175/1520-0493(2001)129<0108:CSASBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bourscheidt, V., O. Pinto, K. P. Naccarato, and I. R. C. A. Pinto, 2009: The influence of topography on the cloud-to-ground lightning density in South Brazil. Atmos. Res., 91, 508513, doi:10.1016/j.atmosres.2008.06.010.

    • Search Google Scholar
    • Export Citation
  • Brugger, K. A., and B. S. Goldstein, 1999: Paleoglacier reconstruction and late-Pleistocene equilibrium-line altitudes, southern Sawatch Range, Colorado. Glacial Processes: Past and Present, D. M. Mickelson and J. W. Attig, Eds., Geological Society of America, 103–112.

  • Cummins, K. L., 2012: On the relationship between terrain variation and LLS-derived lightning parameters. 2012 Int. Conf. on Lightning Protection (ICLP), Vienna, Austria, Vienna University of Technology, 9 pp. [Available online at http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06344336.]

  • Cummins, K. L., and M. J. Murphy, 2009: An overview of lightning location systems: History, techniques, and data uses, with an in depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat., 51, 499518, doi:10.1109/TEMC.2009.2023450.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103, 90359044, doi:10.1029/98JD00153.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., J. A. Cramer, C. J. Biagi, E. P. Krider, J. Jerauld, M. A. Uman, and V. A. Rakov, 2006: The U.S. National Lightning Detection Network: Post-upgrade status. Second Conf. on Meteorological Applications of Lightning Data, Atlanta, GA, Amer. Meteor. Soc., 6.1. [Available online at https://ams.confex.com/ams/Annual2006/techprogram/paper_105142.htm.]

  • ESRI, 2013: ArcGIS Desktop: Release 10.2. Environmental Systems Research Institute.

  • Hodanish, S. J., and P. Wolyn, 2011: Lightning climatology for the state of Colorado. Fourth International Lightning Meteorology Conf., Broomfield, CO, Amer. Meteor. Soc., P8.5. [Available online at https://ams.confex.com/ams/91Annual/webprogram/Paper185671.html.]

  • Krider, E. P., R. C. Noggle, A. E. Pifer, and D. L. Vance, 1980: Lightning direction finding systems for forest fire detection. Bull. Amer. Meteor. Soc., 61, 980986, doi:10.1175/1520-0477(1980)061<0980:LDFSFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leonard, E. M., 1984: Late Pleistocene equilibrium-line altitudes and modern snow accumulation patterns, San Juan Mountains, Colorado, U.S.A. Arct. Alp. Res., 16, 6576, doi:10.2307/1551173.

    • Search Google Scholar
    • Export Citation
  • Lopez, R. E., and R. L. Holle, 1986: Diurnal and spatial variability of lightning activity in northeastern Colorado and central Florida during the summer. Mon. Wea. Rev., 114, 12881312, doi:10.1175/1520-0493(1986)114<1288:DASVOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • MacEachren, A. M., M. Gahegan, W. Pike, I. Brewer, G. Cai, E. Lengerich, and F. Hardisty, 2004: Geovisualization for knowledge construction and decision-support. IEEE Comput. Graph. Appl., 24, 1317, doi:10.1109/MCG.2004.1255801.

    • Search Google Scholar
    • Export Citation
  • Mach, D. M., D. R. MacGorman, W. D. Rust, and R. T. Arnold, 1986: Site errors and detection efficiency in a magnetic direction-finder network for locating lightning strikes to ground. J. Atmos. Oceanic Technol., 3, 6774, doi:10.1175/1520-0426(1986)003<0067:SEADEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meierding, T. C., 1982: Late-pleistocene glacial equilibrium-line altitudes in the Colorado Front Range: A comparison of methods. Quat. Res., 18, 289310, doi:10.1016/0033-5894(82)90076-X.

    • Search Google Scholar
    • Export Citation
  • National Park Service, cited 2013: Natural features in ecosystems. [Available online at http://www.nps.gov/romo/naturescience/naturalfeaturesandecosystems.htm.]

  • Orville, R. E., 1991: Lightning ground flash density in the contiguous United States—1989. Mon. Wea. Rev., 119, 573577, doi:10.1175/1520-0493(1991)119<0573:LGFDIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., 2008: Development of the National Lightning Detection Network. Bull. Amer. Meteor. Soc., 89, 180190, doi:10.1175/BAMS-89-2-180.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and G. R. Huffines, 2001: Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Mon. Wea. Rev., 129, 11791193, doi:10.1175/1520-0493(2001)129<1179:CTGLIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., R. W. Henderson, and L. F. Bosart, 1983: An east coast lightning detection network. Bull. Amer. Meteor. Soc., 64, 10291037, doi:10.1175/1520-0477(1983)064<1029:AECLDN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., G. R. Huffines, W. R. Burrows, R. L. Holle, and K. L. Cummins, 2002: The North American lightning detection network (NALDN)—First results: 1998–2000. Mon. Wea. Rev., 130, 20982109, doi:10.1175/1520-0493(2002)130<2098:TNALDN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., G. R. Huffines, W. R. Burrows, and K. L. Cummins, 2011: The North American Lightning Detection Network (NALDN)—Analysis of flash data: 2001–09. Mon. Wea. Rev., 139, 13051322, doi:10.1175/2010MWR3452.1.

    • Search Google Scholar
    • Export Citation
  • Reap, R. M., 1986: Evaluation of cloud-to-ground lightning data from the western United States for the 1983–84 summer seasons. J. Climate Appl. Meteor., 25, 785799, doi:10.1175/1520-0450(1986)025<0785:EOCTGL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and H. E. Fuelberg, 2010: Pre- and postupgrade distributions of NLDN reported cloud-to-ground lightning characteristics in the contiguous United States. Mon. Wea. Rev., 138, 36233633, doi:10.1175/2010MWR3283.1.

    • Search Google Scholar
    • Export Citation
  • Stall, C. A., K. L. Cummins, E. P. Krider, and J. A. Cramer, 2009: Detecting multiple ground contacts in cloud-to-ground lightning flashes. J. Atmos. Oceanic Technol., 26, 23922402, doi:10.1175/2009JTECHA1278.1.

    • Search Google Scholar
    • Export Citation
  • Szoke, E. J., M. L. Weisman, J. M. Brown, F. Caracena, and T. W. Schlatter, 1984: A subsynoptic analysis of the Denver tornadoes of 3 June 1981. Mon. Wea. Rev., 112, 790808, doi:10.1175/1520-0493(1984)112<0790:ASAOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • U.S. Geological Survey, cited 2013: Science in your state: Colorado. Denver, Colorado. [Available online at http://www.usgs.gov/state/state.asp?State=CO.]

  • Valine, W. C., and E. P. Krider, 2002: Statistics and characteristics of cloud-to-ground lightning with multiple ground contacts. J. Geophys. Res.,107, 4441, doi:10.1029/2001JD001360.

  • Zajac, B. A., and S. A. Rutledge, 2001: Cloud-to-ground lightning activity in the contiguous United States from 1995 to 1999. Mon. Wea. Rev., 129, 9991019, doi:10.1175/1520-0493(2001)129<0999:CTGLAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19164 17592 7839
PDF Downloads 859 196 16