An Observational and Modeling Study of the Processes Leading to Deep, Moist Convection in Complex Terrain

Tammy M. Weckwerth * Earth Observing Laboratory, National Center for Atmospheric Research,& Boulder, Colorado

Search for other papers by Tammy M. Weckwerth in
Current site
Google Scholar
PubMed
Close
,
Lindsay J. Bennett National Centre for Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Lindsay J. Bennett in
Current site
Google Scholar
PubMed
Close
,
L. Jay Miller * Earth Observing Laboratory, National Center for Atmospheric Research,& Boulder, Colorado

Search for other papers by L. Jay Miller in
Current site
Google Scholar
PubMed
Close
,
Joël Van Baelen Laboratoire de Météorologie Physique, CNRS–Université Blaise Pascal, Clermont-Ferrand, France

Search for other papers by Joël Van Baelen in
Current site
Google Scholar
PubMed
Close
,
Paolo Di Girolamo Scuola di Ingegneria, Università degli Studi della Basilicata, Potenza, Italy

Search for other papers by Paolo Di Girolamo in
Current site
Google Scholar
PubMed
Close
,
Alan M. Blyth National Centre for Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Alan M. Blyth in
Current site
Google Scholar
PubMed
Close
, and
Tracy J. Hertneky * Earth Observing Laboratory, National Center for Atmospheric Research,& Boulder, Colorado

Search for other papers by Tracy J. Hertneky in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A case study of orographic convection initiation (CI) that occurred along the eastern slopes of the Vosges Mountains in France on 6 August 2007 during the Convective and Orographically-Induced Precipitation Study (COPS) is presented. Global positioning system (GPS) receivers and two Doppler on Wheels (DOW) mobile radars sampled the preconvective and storm environments and were respectively used to retrieve three-dimensional tomographic water vapor and wind fields. These retrieved data were supplemented with temperature, moisture, and winds from radiosondes from a site in the eastern Rhine Valley. High-resolution numerical simulations with the Weather Research and Forecasting (WRF) Model were used to further investigate the physical processes leading to convective precipitation.

This unique, time-varying combination of derived water vapor and winds from observations illustrated an increase in low-level moisture and convergence between upslope easterlies and downslope westerlies along the eastern slope of the Vosges Mountains. Uplift associated with these shallow, colliding boundary layer flows eventually led to the initiation of moist convection. WRF reproduced many features of the observed complicated flow, such as cyclonic (anticyclonic) flow around the southern (northern) end of the Vosges Mountains and the east-side convergent flow below the ridgeline. The WRF simulations also illustrated spatial and temporal variability in buoyancy and the removal of the lids prior to convective development. The timing and location of CI from the WRF simulations was surprisingly close to that observed.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Tammy M. Weckwerth, NCAR EOL, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: tammy@ucar.edu

Abstract

A case study of orographic convection initiation (CI) that occurred along the eastern slopes of the Vosges Mountains in France on 6 August 2007 during the Convective and Orographically-Induced Precipitation Study (COPS) is presented. Global positioning system (GPS) receivers and two Doppler on Wheels (DOW) mobile radars sampled the preconvective and storm environments and were respectively used to retrieve three-dimensional tomographic water vapor and wind fields. These retrieved data were supplemented with temperature, moisture, and winds from radiosondes from a site in the eastern Rhine Valley. High-resolution numerical simulations with the Weather Research and Forecasting (WRF) Model were used to further investigate the physical processes leading to convective precipitation.

This unique, time-varying combination of derived water vapor and winds from observations illustrated an increase in low-level moisture and convergence between upslope easterlies and downslope westerlies along the eastern slope of the Vosges Mountains. Uplift associated with these shallow, colliding boundary layer flows eventually led to the initiation of moist convection. WRF reproduced many features of the observed complicated flow, such as cyclonic (anticyclonic) flow around the southern (northern) end of the Vosges Mountains and the east-side convergent flow below the ridgeline. The WRF simulations also illustrated spatial and temporal variability in buoyancy and the removal of the lids prior to convective development. The timing and location of CI from the WRF simulations was surprisingly close to that observed.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Tammy M. Weckwerth, NCAR EOL, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: tammy@ucar.edu
Save
  • Banta, R. M., 1984: Daytime boundary-layer evolution over mountainous terrain. Part I: Observations of the dry circulations. Mon. Wea. Rev., 112, 340356, doi:10.1175/1520-0493(1984)112<0340:DBLEOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Behrendt, A., and Coauthors, 2011: Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b. Quart. J. Roy. Meteor. Soc., 137, 81100, doi:10.1002/qj.758.

    • Search Google Scholar
    • Export Citation
  • Bennett, L. J., and Coauthors, 2011: Initiation of convection over the Black Forest Mountains during COPS IOP15a. Quart. J. Roy. Meteor. Soc., 137, 176189, doi:10.1002/qj.760.

    • Search Google Scholar
    • Export Citation
  • Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, 1992: GPS meteorology: Remote sensing of atmospheric water vapour using the global positioning system. J. Geophys. Res., 97, 15 78715 801, doi:10.1029/92JD01517.

    • Search Google Scholar
    • Export Citation
  • Bevis, M., S. Businger, S. R. Chiswell, T. A. Herring, R. A. Anthes, C. Rocken, and R. H. Ware, 1994: GPS meteorology: Mapping zenith wet delay onto precipitable water. J. Appl. Meteor., 33, 379386, doi:10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bhawar, R., and Coauthors, 2011: The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: Airborne-to-ground-based and airborne-to airborne lidar systems. Quart. J. Roy. Meteor. Soc., 137, 325348, doi:10.1002/qj.697.

    • Search Google Scholar
    • Export Citation
  • Businger, S., and Coauthors, 1996: The promise of GPS in atmospheric monitoring. Bull. Amer. Meteor. Soc., 77, 518, doi:10.1175/1520-0477(1996)077<0005:TPOGIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham Jr., 1949: The Thunderstorm.U.S. Government Printing Office, 287 pp.

  • Chaboureau, J. P., F. Guichard, J. L. Redelsperger, and J. L. Lafore, 2004: The role of stability and moisture in the diurnal cycle of convection over land. Quart. J. Roy. Meteor. Soc., 130, 31053117, doi:10.1256/qj.03.132.

    • Search Google Scholar
    • Export Citation
  • Corsmeier, U., and Coauthors, 2011: Processes driving deep convection over complex terrain: A multi-scale analysis of observations from COPS IOP 9c. Quart. J. Roy. Meteor. Soc., 137, 137155, doi:10.1002/qj.754.

    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367384, doi:10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Di Girolamo, P., D. Summa, and R. Ferretti, 2009: Multiparameter Raman lidar measurements for the characterization of a dry stratospheric intrusion event. J. Atmos. Oceanic Technol., 26, 17421762, doi:10.1175/2009JTECHA1253.1.

    • Search Google Scholar
    • Export Citation
  • Di Girolamo, P., D. Summa, R. Bhawar, T. Di Iorio, M. Cacciani, I. Veselovskii, O. Dubovik, and A. Kolgotin, 2012: Raman lidar observations of a Saharan dust outbreak event: Characterization of the dust optical properties and determination of particle size and micropshysical parameters. Atmos. Environ., 50, 6678, doi:10.1016/j.atmosenv.2011.12.061.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., 1982: Errors in fixed and moving frames of references: Applications for conventional and Doppler radar analysis. J. Atmos. Sci., 39, 22792300, doi:10.1175/1520-0469(1982)039<2279:EIFAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., Q. Miao, and J. C. Demko, 2008: Pressure perturbations and upslope flow over a heated, isolated mountain. Mon. Wea. Rev., 136, 42724288, doi:10.1175/2008MWR2546.1.

    • Search Google Scholar
    • Export Citation
  • Gorgas, T., M. Dorninger, and R. Steinacker, 2009: High resolution analyses based on the D_PHASE and COPS GTS and non-GTS data set. Ann. Meteor.,44, 94–95.

  • Hagen, M., J. van Baelen, and E. Richard, 2011: Influence of the wind profile on the initiation of convection in mountainous terrain. Quart. J. Roy. Meteor. Soc., 137, 224235, doi:10.1002/qj.784.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., C. J. Kessinger, and P. S. Ray, 1987: The Oklahoma squall line of 19 May 1977. Part II: Mechanisms for maintenance of the region of strong convection. J. Atmos. Sci., 44, 28662883, doi:10.1175/1520-0469(1987)044<2866:TOSLOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., D. J. Kirshbaum, S. E. Belcher, N. M. Roberts, and G. Leoncini, 2011: Ensemble predictability of an isolated mountain thunderstorm in a high-resolution model. Quart. J. Roy. Meteor. Soc., 137, 21242137, doi:10.1002/qj.877.

    • Search Google Scholar
    • Export Citation
  • Kalthoff, N., and Coauthors, 2011: The dependence of convection-related parameters on surface and boundary-layer conditions over complex terrain. Quart. J. Roy. Meteor. Soc., 137, 7080, doi:10.1002/qj.686.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., 1995: Convection initiation associated with a sea-breeze front, a gust front, and their collision. Mon. Wea. Rev., 123, 29132933, doi:10.1175/1520-0493(1995)123<2913:CIAWAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., 2011: Cloud-resolving simulations of deep convection over a heated mountain. J. Atmos. Sci., 68, 361378, doi:10.1175/2010JAS3642.1.

    • Search Google Scholar
    • Export Citation
  • Kottmeier, C., and Coauthors, 2008: Mechanisms initiating deep convection over complex terrain during COPS. Meteor. Z., 17, 931948, doi:10.1127/0941-2948/2008/0348.

    • Search Google Scholar
    • Export Citation
  • Labbouz, L., and Coauthors, 2013: Precipitation on the lee side of the Vosges Mountains: Multi-instrumental study of one case from the COPS campaign. Meteor. Z., 22, 413432, doi:10.1127/0941-2948/2013/0413.

    • Search Google Scholar
    • Export Citation
  • May, P. T., 1999: Thermodynamic and vertical velocity structure of two gust fronts observed with a wind profiler/RASS during MCTEX. Mon. Wea. Rev., 127, 17961807, doi:10.1175/1520-0493(1999)127<1796:TAVVSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miller, L. J., J. D. Tuttle, and C. K. Knight, 1988: Airflow and hail growth in a severe northern high plains supercell. J. Atmos. Sci., 45, 736762, doi:10.1175/1520-0469(1988)045<0736:AAHGIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miller, L. J., J. D. Tuttle, and G. B. Foote, 1990: Precipitation production in a large Montana hailstorm: Airflow and particle growth trajectories. J. Atmos. Sci., 47, 16191646, doi:10.1175/1520-0469(1990)047<1619:PPIALM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mohr, C. G., L. J. Miller, R. L. Vaughan, and H. W. Frank, 1986: The merger of mesoscale datasets into a common Cartesian format for efficient and systematic analysis. J. Atmos. Oceanic Technol., 3, 143161, doi:10.1175/1520-0426(1986)003<0143:TMOMDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morcrette, C., H. Lean, K. Browning, J. Nicol, N. Roberts, P. Clark, A. Russell, and A. Blyth, 2007: Combination of mesoscale and synoptic mechanisms for triggering an isolated thunderstorm: Observational case study of CSIP IOP 1. Mon. Wea. Rev., 135, 37283749, doi:10.1175/2007MWR2067.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, A. B. White, D. E. Kingsmill, and P. O. G. Persson, 2002: The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492, doi:10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Brien, J. J., 1970: Alternative solutions to the classical vertical velocity problem. J. Appl. Meteor., 9, 197203, doi:10.1175/1520-0450(1970)009<0197:ASTTCV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oye, R., C. Mueller, and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359361.

  • Purdom, J. F. W., and K. Marcus, 1982: Thunderstorm trigger mechanisms over the southeast U.S. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 487488.

  • Rotach, M. W., and Coauthors, 2009a: MAP D-PHASE: Real-time demonstration of weather forecast quality in the Alpine region. Bull. Amer. Meteor. Soc., 90, 13211336, doi:10.1175/2009BAMS2776.1.

    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., and Coauthors, 2009b: Supplement to MAP D-PHASE: Real-time demonstration of weather forecast quality in the Alpine region: Additional applications of the D-Phase datasets. Bull. Amer. Meteor. Soc.,90,S28S32, doi:10.1175/2009BAMS2776.2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Rep. NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Smolarkiewicz, P., and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 11541164, doi:10.1175/1520-0469(1989)046<1154:LFNFPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steinacker, R., C. Häberli, and W. Pöttschacher, 2000: A transparent method for the analysis and quality evaluation of irregularly distributed and noisy observational data. Mon. Wea. Rev., 128, 23032316, doi:10.1175/1520-0493(2000)128<2303:ATMFTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steinacker, R., and Coauthors, 2006: A mesoscale data analysis and downscaling method over complex terrain. Mon. Wea. Rev., 134, 27582771, doi:10.1175/MWR3196.1.

    • Search Google Scholar
    • Export Citation
  • Van Baelen, J., J.-P. Aubagnac, and A. Dabas, 2005: Comparison of near-real-time estimates of integrated water vapour derived with GPS, radiosondes, and microwave radiometer. J. Atmos. Oceanic Technol., 22, 201210, doi:10.1175/JTECH-1697.1.

    • Search Google Scholar
    • Export Citation
  • Van Baelen, J., M. Reverdy, F. Tridon, L. Labbouz, G. Dick, M. Bender, and M. Hagen, 2011: On the relationship between water vapour field evolution and the life cycle of precipitation systems. Quart. J. Roy. Meteor. Soc., 137, 204223, doi:10.1002/qj.785.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H. L. Cole, D. J. Carlson, E. R. Miller, K. Beierle, A. Paukkunen, and T. K. Laine, 2002: Corrections of humidity measurement errors from the Vaisala RS80 radiosonde—Application to TOGA-COARE data. J. Atmos. Oceanic Technol., 19, 9811002, doi:10.1175/1520-0426(2002)019<0981:COHMEF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J., L. Zhang, A. Dai, T. Van Hove, and J. Van Baelen, 2007: A near-global two-hourly data set of atmospheric precipitable water from ground-based GPS measurements. J. Geophys. Res., 112, D11107, doi:10.1029/2006JD007529.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, M. Hagen, T. J. Emerson, J. O. Pinto, D. L. Rife, and L. Grebe, 2011: Radar climatology of the COPS region. Quart. J. Roy. Meteor. Soc., 137, 3141, doi:10.1002/qj.747.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 25162536, doi:10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and C. K. Mueller, 1993: Nowcasts of thunderstorm initiation and evolution. Wea. Forecasting, 8, 113131, doi:10.1175/1520-0434(1993)008<0113:NOTIAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and D. L. Megenhardt, 1997: Thunderstorm initiation, organization, and lifetime associated with Florida boundary layer convergence lines. Mon. Wea. Rev., 125, 15071525, doi:10.1175/1520-0493(1997)125<1507:TIOALA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., T. M. Weckwerth, J. Vivekanandan, R. M. Wakimoto, and R. W. Russell, 1994: Boundary layer clear-air radar echoes: Origin of echoes and accuracy of derived winds. J. Atmos. Oceanic Technol., 11, 11841206, doi:10.1175/1520-0426(1994)011<1184:BLCARE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2008: The Convective and Orographically Induced Precipitation Study: A research and development project of the World Weather Research Program for improving quantitative precipitation forecasting in low-mountain regions. Bull. Amer. Meteor. Soc., 89, 14771486, doi:10.1175/2008BAMS2367.1.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2011: The Convective and Orographically-induced Precipitation Study (COPS): The scientific strategy, the field phase and first highlights. Quart. J. Roy. Meteor. Soc., 137, 330, doi:10.1002/qj.752.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., J. Straka, E. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14, 15021512, doi:10.1175/1520-0426(1997)014<1502:DADOAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 603 149 23
PDF Downloads 255 69 12