VORTEX2 Observations of a Low-Level Mesocyclone with Multiple Internal Rear-Flank Downdraft Momentum Surges in the 18 May 2010 Dumas, Texas, Supercell

Patrick S. Skinner Texas Tech University, Lubbock, Texas

Search for other papers by Patrick S. Skinner in
Current site
Google Scholar
PubMed
Close
,
Christopher C. Weiss Texas Tech University, Lubbock, Texas

Search for other papers by Christopher C. Weiss in
Current site
Google Scholar
PubMed
Close
,
Michael M. French NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Michael M. French in
Current site
Google Scholar
PubMed
Close
,
Howard B. Bluestein University of Oklahoma, Norman, Oklahoma

Search for other papers by Howard B. Bluestein in
Current site
Google Scholar
PubMed
Close
,
Paul M. Markowski The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Paul M. Markowski in
Current site
Google Scholar
PubMed
Close
, and
Yvette P. Richardson The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Yvette P. Richardson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations collected in the second Verification of the Origins of Rotation in Tornadoes Experiment during a 15-min period of a supercell occurring on 18 May 2010 near Dumas, Texas, are presented. The primary data collection platforms include two Ka-band mobile Doppler radars, which collected a near-surface, short-baseline dual-Doppler dataset within the rear-flank outflow of the Dumas supercell; an X-band, phased-array mobile Doppler radar, which collected volumetric single-Doppler data with high temporal resolution; and in situ thermodynamic and wind observations of a six-probe mobile mesonet.

Rapid evolution of the Dumas supercell was observed, including the development and decay of a low-level mesocyclone and four internal rear-flank downdraft (RFD) momentum surges. Intensification and upward growth of the low-level mesocyclone were observed during periods when the midlevel mesocyclone was minimally displaced from the low-level circulation, suggesting an upward-directed perturbation pressure gradient force aided in the intensification of low-level rotation. The final three internal RFD momentum surges evolved in a manner consistent with the expected behavior of a dynamically forced occlusion downdraft, developing at the periphery of the low-level mesocyclone during periods when values of low-level cyclonic azimuthal wind shear exceeded values higher aloft. Failure of the low-level mesocyclone to acquire significant vertical depth suggests that dynamic forcing above internal RFD momentum surge gust fronts was insufficient to lift the negatively buoyant air parcels comprising the RFD surges to significant heights. As a result, vertical acceleration and the stretching of vertical vorticity in surge parcels were limited, which likely contributed to tornadogenesis failure.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-13-00240.s1.

Corresponding author address: Patrick Skinner, Atmospheric Science Group, Department of Geosciences, Texas Tech University, Box 41053, Lubbock, TX 79409-1053. E-mail: patrick.skinner@ttu.edu

Abstract

Observations collected in the second Verification of the Origins of Rotation in Tornadoes Experiment during a 15-min period of a supercell occurring on 18 May 2010 near Dumas, Texas, are presented. The primary data collection platforms include two Ka-band mobile Doppler radars, which collected a near-surface, short-baseline dual-Doppler dataset within the rear-flank outflow of the Dumas supercell; an X-band, phased-array mobile Doppler radar, which collected volumetric single-Doppler data with high temporal resolution; and in situ thermodynamic and wind observations of a six-probe mobile mesonet.

Rapid evolution of the Dumas supercell was observed, including the development and decay of a low-level mesocyclone and four internal rear-flank downdraft (RFD) momentum surges. Intensification and upward growth of the low-level mesocyclone were observed during periods when the midlevel mesocyclone was minimally displaced from the low-level circulation, suggesting an upward-directed perturbation pressure gradient force aided in the intensification of low-level rotation. The final three internal RFD momentum surges evolved in a manner consistent with the expected behavior of a dynamically forced occlusion downdraft, developing at the periphery of the low-level mesocyclone during periods when values of low-level cyclonic azimuthal wind shear exceeded values higher aloft. Failure of the low-level mesocyclone to acquire significant vertical depth suggests that dynamic forcing above internal RFD momentum surge gust fronts was insufficient to lift the negatively buoyant air parcels comprising the RFD surges to significant heights. As a result, vertical acceleration and the stretching of vertical vorticity in surge parcels were limited, which likely contributed to tornadogenesis failure.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-13-00240.s1.

Corresponding author address: Patrick Skinner, Atmospheric Science Group, Department of Geosciences, Texas Tech University, Box 41053, Lubbock, TX 79409-1053. E-mail: patrick.skinner@ttu.edu

Supplementary Materials

    • Supplemental Materials (ZIP 8.26 MB)
Save
  • Adlerman, E. J., 2003: Numerical simulations of cyclic storm behavior: Mesocyclogenesis and tornadogenesis. Ph.D. thesis, University of Oklahoma, 217 pp. [Available from School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Suite 5900, Norman, OK 73072.]

  • Adlerman, E. J., K. K. Droegemeier, and R. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56, 20452069, doi:10.1175/1520-0469(1999)056<2045:ANSOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396409, doi:10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beck, J. R., and C. C. Weiss, 2013: An assessment of low-level baroclinity and vorticity within a simulated supercell. Mon. Wea. Rev., 141, 649669, doi:10.1175/MWR-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and Coauthors, 2005: The Shared Mobile Atmospheric Research and Teaching Radar: A collaboration to enhance research and teaching. Bull. Amer. Meteor. Soc., 86, 12631274, doi:10.1175/BAMS-86-9-1263.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., C. C. Weiss, and A. L. Pazmany, 2003: Mobile Doppler observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999. Part I: Tornadogenesis. Mon. Wea. Rev., 131, 29542967, doi:10.1175/1520-0493(2003)131<2954:MDROOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., M. M. French, I. PopStefanija, R. T. Bluth, and J. B. Knorr, 2010: A mobile, phased-array Doppler radar for the study of severe convective storms. Bull. Amer. Meteor. Soc., 91, 579600, doi:10.1175/2009BAMS2914.1.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., J. B. Houser, M. M. French, J. C. Snyder, G. D. Emmit, I. PopStefanija, C. Baldi, and R. T. Bluth, 2014: Observations of the boundary layer near tornadoes and in supercells using a mobile, collocated, pulsed Doppler lidar and radar. J. Atmos. Oceanic Technol., 31, 302325, doi:10.1175/JTECH-D-13-00112.1.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, doi:10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Byko, Z., P. Markowski, Y. P. Richardson, J. Wurman, and E. Adlerman, 2009: Descending reflectivity cores in supercell thunderstorms observed by mobile radars and in a high-resolution numerical simulation. Wea. Forecasting, 24, 155186, doi:10.1175/2008WAF2222116.1.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2014: Imported and storm-generated near-ground vertical vorticity in a simulated supercell. J. Atmos. Sci., doi:10.1175/JAS-D-13-0123.1, in press.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002a: The 8 June 1995 McLean, Texas, storm. Part I: Observations of cyclic tornadogenesis. Mon. Wea. Rev., 130, 26262648, doi:10.1175/1520-0493(2002)130<2626:TJMTSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002b: The 8 June 1995 McLean, Texas, storm. Part II: Cyclic tornado formation, maintenance, and dissipation. Mon. Wea. Rev., 130, 26492670, doi:10.1175/1520-0493(2002)130<2649:TJMTSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Finley, C. A., and B. D. Lee, 2004: High resolution mobile mesonet observations of RFD surges in the June 9 Basset, Nebraska supercell during Project ANSWERS 2003. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., P11.3. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_82005.htm.]

  • Finley, C. A., and B. D. Lee, 2008: Mobile mesonet observations of an intense RFD and multiple RFD gust fronts in the May 23 Quinter, Kansas tornadic supercell during TWISTEX 2008. 24nd Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., P3.18. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_142133.htm.]

  • French, M. M., H. B. Bluestein, I. PopStefanija, C. Baldi, and R. T. Bluth, 2013: Reexamining the vertical development of tornadic vortex signatures in supercells. Mon. Wea. Rev., 141, 45764601, doi:10.1175/MWR-D-12-00315.1.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1955: Results of detailed synoptic studies of squall lines. Tellus, 7, 405436, doi:10.1111/j.2153-3490.1955.tb01181.x.

    • Search Google Scholar
    • Export Citation
  • Grzych, M. L., B. D. Lee, and C. A. Finley, 2007: Thermodynamic analysis of supercell rear-flank downdrafts from Project ANSWERS 2003. Mon. Wea. Rev., 135, 240246, doi:10.1175/MWR3288.1.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., and P. S. Ray, 1985: Pressure and buoyancy fields derived from Doppler radar data in a tornadic thunderstorm. J. Atmos. Sci., 42, 1835, doi:10.1175/1520-0469(1985)042<0018:PABFDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hastings, R. M., Y. P. Richardson, P. M. Markowski, J. Wurman, and C. C. Weiss, 2012: Mergers in supercell environments. Part I: Conceptual models of mechanisms governing merger outcomes. 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 11B.6. [Available online at https://ams.confex.com/ams/26SLS/webprogram/Paper212519.html.]

  • Hirth, B. D., J. L. Schroeder, and C. C. Weiss, 2008: Surface analysis of the rear-flank downdraft outflow in two tornadic supercells. Mon. Wea. Rev., 136, 23442363, doi:10.1175/2007MWR2285.1.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., T. R. Shepherd, and A. S. Goldstein, 2000: A dual-pulse repetition frequency scheme for mitigating velocity ambiguities of the NOAA P-3 airborne Doppler radar. J. Atmos. Oceanic Technol., 17, 585594, doi:10.1175/1520-0426(2000)017<0585:ADPRFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karstens, C. D., T. M. Samaras, B. D. Lee, W. A. Gallus, and C. A. Finley, 2010: Near-ground pressure and wind measurements in tornadoes. Mon. Wea. Rev., 138, 25702588, doi:10.1175/2010MWR3201.1.

    • Search Google Scholar
    • Export Citation
  • Karstens, C. D., W. A. Gallus Jr., B. D. Lee, and C. A. Finley, 2013: Analysis of tornado-induced tree fall using aerial photography from the Joplin, Missouri, and Tuscaloosa–Birmingham, Alabama, tornadoes of 2011. J. Appl. Meteor. Climatol., 52, 10491068, doi:10.1175/JAMC-D-12-0206.1.

    • Search Google Scholar
    • Export Citation
  • Kennedy, A. D., J. M. Straka, and E. N. Rasmussen, 2007: A statistical study of the association of DRCs with supercells and tornadoes. Wea. Forecasting, 22, 11911199, doi:10.1175/2007WAF2006095.1.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359377, doi:10.1175/1520-0469(1983)040<0359:ASOTTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., M. desJardins, and P. J. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22, 14871503, doi:10.1175/1520-0450(1983)022<1487:AIBOMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kosiba, K. A., J. Wurman, Y. P. Richardson, P. Markowski, P. Robinson, and J. Marquis, 2013: Genesis of the Goshen County, Wyoming, tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 11571181, doi:10.1175/MWR-D-12-00056.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2011: Precipitation properties of supercell hook echoes. Electron. J. Severe Storms Meteor.,6 (5). [Available online at http://ejssm.org/ojs/index.php/ejssm/article/viewArticle/93.]

  • Lee, B. D., C. A. Finley, and P. S. Skinner, 2004: Thermodynamic and kinematic analysis of multiple RFD surges for the 24 June 2003 Manchester, SD, cyclic tornadic supercell during Project ANSWERS 2003. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., P11.2. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_82000.htm.]

  • Lee, B. D., C. A. Finley, and T. M. Samaras, 2011: Surface analysis near and within the Tipton, Kansas, tornado on 29 May 2008. Mon. Wea. Rev., 139, 370386, doi:10.1175/2010MWR3454.1.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., C. A. Finley, and C. D. Karstens, 2012: The Bowdle, South Dakota, cyclic tornadic supercell of 22 May 2010: Surface analysis of rear-flank downdraft evolution and multiple internal surges. Mon. Wea. Rev., 140, 34193441, doi:10.1175/MWR-D-11-00351.1.

    • Search Google Scholar
    • Export Citation
  • Majcen, M., P. Markowski, Y. P. Richardson, D. Dowell, and J. Wurman, 2008: Multipass objective analysis of Doppler radar data. J. Atmos. Oceanic Technol., 25, 18451858, doi:10.1175/2008JTECHA1089.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2002: Hook echoes and rear-flank downdrafts: A review. Mon. Wea. Rev., 130, 852876, doi:10.1175/1520-0493(2002)130<0852:HEARFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243–275, doi:10.1175/JAS-D-13-0159.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic measurements within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, doi:10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, E. N. Rasmussen, R. P. Davies-Jones, Y. P. Richardson, and J. Trapp, 2008: Vortex lines within low-level mesocyclones obtained from pseudo-dual-Doppler radar observations. Mon. Wea. Rev., 136, 35133535, doi:10.1175/2008MWR2315.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., M. Majcen, Y. P. Richardson, J. Marquis, and J. Wurman, 2011: Characteristics of the wind field in a trio of nontornadic low-level mesocyclones observed by the Doppler on Wheels radars. Electron. Severe Storms Meteor.,6 (3). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/75.]

  • Markowski, P. M., and Coauthors, 2012a: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part I: Evolution of kinematic and surface thermodynamic fields. Mon. Wea. Rev., 140, 28872915, doi:10.1175/MWR-D-11-00336.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Coauthors, 2012b: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part II: Intensification of low-level rotation. Mon. Wea. Rev., 140, 29162938, doi:10.1175/MWR-D-11-00337.1.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. P. Richardson, J. Wurman, and P. M. Markowski, 2008: Single- and dual-Doppler analysis of a tornadic vortex and surrounding storm-scale flow in the Crowell, Texas, supercell of 30 April 2000. Mon. Wea. Rev., 136, 50175043, doi:10.1175/2008MWR2442.1.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. P. Richardson, P. M. Markowski, D. C. Dowell, and J. Wurman, 2012: Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon. Wea. Rev., 140, 327, doi:10.1175/MWR-D-11-00025.1.

    • Search Google Scholar
    • Export Citation
  • Mashiko, W., H. Niino, and T. Kato, 2009: Numerical simulation of tornadogenesis in an outer-rainband minisupercell of Typhoon Shanshan on 17 September 2006. Mon. Wea. Rev., 137, 42384260, doi:10.1175/2009MWR2959.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and G. H. Bryan, 2010: Mobile soundings during VORTEX2: Survey and preliminary results. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 5.6. [Available online at https://ams.confex.com/ams/25SLS/techprogram/paper_175917.htm.]

  • Pauley, P. M., and X. Wu, 1990: The theoretical, discrete, and actual response of the Barnes objective analysis scheme for one- and two-dimensional fields. Mon. Wea. Rev., 118, 11451164, doi:10.1175/1520-0493(1990)118<1145:TTDAAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and J. M. Straka, 1998: Variations in supercell morphology. Part I: Observations of the role of upper-level storm-relative flow. Mon. Wea. Rev., 126, 24062421, doi:10.1175/1520-0493(1998)126<2406:VISMPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., J. M. Straka, R. P. Davies-Jones, C. A. Doswell, F. H. Carr, M. D. Eilts, and D. R. MacGorman, 1994: Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX. Bull. Amer. Meteor. Soc., 75, 9951006, doi:10.1175/1520-0477(1994)075<0995:VOTOOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., J. M. Straka, M. S. Gilmore, and R. Davies-Jones, 2006: A preliminary survey of rear-flank descending reflectivity cores in supercell storms. Wea. Forecasting, 21, 923938, doi:10.1175/WAF962.1.

    • Search Google Scholar
    • Export Citation
  • Romine, G. S., D. W. Burgess, and R. B. Wilhelmson, 2008: A dual-polarization-radar-based assessment of the 8 May 2003 Oklahoma City area tornadic supercell. Mon. Wea. Rev., 136, 28492870, doi:10.1175/2008MWR2330.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1982: The influence of shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136151, doi:10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and M. Hu, 2014: Tornadogenesis in a high-resolution simulation of the 8 May 2003 Oklahoma City supercell. J. Atmos. Sci., 71, 130154, doi:10.1175/JAS-D-13-073.1.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., C. C. Weiss, J. L. Schroeder, L. J. Wicker, and M. I. Biggerstaff, 2011: Observations of the surface boundary structure within the 23 May 2007 Perryton, Texas, supercell. Mon. Wea. Rev., 139, 37303749, doi:10.1175/MWR-D-10-05078.1.

    • Search Google Scholar
    • Export Citation
  • Snook, N., and M. Xue, 2008: Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms. Geophys. Res. Lett., 35, L24803, doi:10.1029/2008GL035866.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., E. N. Rasmussen, and S. E. Fredrickson, 1996: A mobile mesonet for finescale meteorological observations. J. Atmos. Oceanic Technol., 13, 921936, doi:10.1175/1520-0426(1996)013<0921:AMMFFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., E. N. Rasmussen, R. P. Davies-Jones, and P. M. Markowski, 2007: An observational and idealized numerical examination of low-level counter-rotating vortices toward the rear flank of supercells. Electron. Severe Storms Meteor.,2 (8). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/32.]

  • Tanamachi, R. L., H. B. Bluestein, M. Xue, W.-C. Lee, K. A. Orzel, S. J. Frasier, and R. M. Wakimoto, 2013: Near-surface vortex structure in a tornado and in a sub-tornado-strength convective-storm vortex observed by a mobile, W-band radar during VORTEX2. Mon. Wea. Rev., 141, 36613690, doi:10.1175/MWR-D-12-00331.1.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and C. A. Doswell, 2000: Radar data objective analysis. J. Atmos. Oceanic Technol., 17, 105120, doi:10.1175/1520-0426(2000)017<0105:RDOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and H. Cai, 2000: Analysis of a nontornadic storm during VORTEX 95. Mon. Wea. Rev., 128, 565592, doi:10.1175/1520-0493(2000)128<0565:AOANSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., C. Liu, and H. Cai, 1998: The Garden City, Kansas, storm during VORTEX 95. Part I: Overview of the storm life cycle and mesocyclogenesis. Mon. Wea. Rev., 126, 372392, doi:10.1175/1520-0493(1998)126<0372:TGCKSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., H. V. Murphey, D. C. Dowell, and H. B. Bluestein, 2003: The Kellerville tornado during VORTEX: Damage survey and Doppler radar analysis. Mon. Wea. Rev., 131, 21972221, doi:10.1175/1520-0493(2003)131<2197:TKTDVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., N. T. Atkins, and J. Wurman, 2011: The LaGrange tornado during VORTEX2. Part I: Photogrammetric analysis of the tornado combined with single-Doppler radar data. Mon. Wea. Rev., 139, 22332258, doi:10.1175/2010MWR3568.1.

    • Search Google Scholar
    • Export Citation
  • Waugh, S., and S. E. Fredrickson, 2010: An improved aspirated temperature system for mobile meteorological observations, especially in severe weather. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., P5.2. [Available online at https://ams.confex.com/ams/25SLS/webprogram/Paper176205.html.]

  • Weiss, C. C., and J. L. Schroeder, 2008: StickNet: A new portable, rapidly-deployable surface observation system. Bull. Amer. Meteor. Soc., 89, 15021503.

    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., J. L. Schroeder, J. Guynes, P. S. Skinner, and J. Beck, 2009: The TTUKa mobile Doppler radar: Coordinated radar and in situ measurements of supercell thunderstorms during Project VORTEX2. 34th Conf. on Radar Meteorology, Williamsport, VA, Amer. Meteor. Soc., 11B.2. [Available online at https://ams.confex.com/ams/34Radar/techprogram/paper_155425.htm.]

  • Weiss, C. C., D. C. Dowell, P. S. Skinner, and A. E. Reinhart, 2012: An assessment of buoyancy and baroclinity within select VORTEX2 storms. 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 13.4. [Available online at https://ams.confex.com/ams/26SLS/webprogram/Paper211795.html.]

  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 26752703, doi:10.1175/1520-0469(1995)052<2675:SAAOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., and S. Gill, 2000: Finescale radar observations of the Dimmit, Texas (2 June 1995), tornado. Mon. Wea. Rev., 128, 21352164, doi:10.1175/1520-0493(2000)128<2135:FROOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., and K. Kosiba, 2013: Fine-scale radar observations of tornado and mesocyclone structures. Wea. Forecasting, 28, 11571175, doi:10.1175/WAF-D-12-00127.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., J. M. Straka, E. N. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14, 15021512, doi:10.1175/1520-0426(1997)014<1502:DADOAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., Y. P. Richardson, C. Alexander, S. Weygant, and P. F. Zhang, 2007: Dual-Doppler and single-Doppler analysis of a tornadic storm undergoing mergers and repeated tornadogenesis. Mon. Wea. Rev., 135, 736758, doi:10.1175/MWR3276.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, P. Markowski, Y. P. Richardson, D. Dowell, and P. Robinson, 2010: Finescale single- and dual-Doppler analysis of tornado intensification, maintenance, and dissipation in the Orleans, Nebraska, supercell. Mon. Wea. Rev., 138, 44394455, doi:10.1175/2010MWR3330.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. P. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. Bluestein, 2012: The second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170, doi:10.1175/BAMS-D-11-00010.1.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., E. N. Rasmussen, T. R. Shepherd, A. I. Watson, and J. M. Straka, 2001: The evolution of low-level rotation in the 29 May 1994 Newcastle–Graham, Texas, storm complex during VORTEX. Mon. Wea. Rev., 129, 13391368, doi:10.1175/1520-0493(2001)129<1339:TEOLLR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 811 246 14
PDF Downloads 600 181 19