Implementing Large-Eddy Simulation Capability in a Compressible Mesoscale Model

Nicolas Gasset Research Laboratory on the Nordic Environment Aerodynamics of Wind Turbines, École de technologie supérieure, Montréal, Québec, Canada

Search for other papers by Nicolas Gasset in
Current site
Google Scholar
PubMed
Close
,
Robert Benoit Research Laboratory on the Nordic Environment Aerodynamics of Wind Turbines, École de technologie supérieure, Montréal, Québec, Canada

Search for other papers by Robert Benoit in
Current site
Google Scholar
PubMed
Close
, and
Christian Masson Research Laboratory on the Nordic Environment Aerodynamics of Wind Turbines, École de technologie supérieure, Montréal, Québec, Canada

Search for other papers by Christian Masson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The large size of modern wind turbines and wind farms triggers processes above the surface layer, which extend to the junction between microscales and mesoscales, and pushes the limits of existing approaches to predict the wind. The main objectives of this study are thus to introduce and evaluate an approach that will better account for physical processes within the atmospheric boundary layer (ABL), and allow for both microscale and mesoscale modeling. The proposed method, in which mathematical model and main numerical aspects are presented, combines a mesoscale approach with a large-eddy simulation (LES) model based on the Compressible Community Mesoscale Model (MC2). It is evaluated relying on a shear-driven ABL case allowing the authors to assess the model behavior at very high resolution as well as more specific numerical aspects such as the vertical discretization and time and space splitting of turbulence-related terms. The proposed LES-capable mesoscale model is shown to perform on par with other similar reference LES models, while being slightly more dissipative. A new vertical discretization of the turbulent processes eliminates a spurious numerical mode in the solution. Finally, the splitting of horizontal and vertical turbulence-related terms is shown to have no impact on the results of the test cases. It is thus demonstrated that the revised MC2 is suitable at both microscales and mesoscales, thus setting a strong foundation for future work.

Corresponding author address: Nicolas Gasset, 1706 Alexandre Desève, Montréal, QC H2L 2V9, Canada. E-mail: nicolas.gasset@gmail.com

Abstract

The large size of modern wind turbines and wind farms triggers processes above the surface layer, which extend to the junction between microscales and mesoscales, and pushes the limits of existing approaches to predict the wind. The main objectives of this study are thus to introduce and evaluate an approach that will better account for physical processes within the atmospheric boundary layer (ABL), and allow for both microscale and mesoscale modeling. The proposed method, in which mathematical model and main numerical aspects are presented, combines a mesoscale approach with a large-eddy simulation (LES) model based on the Compressible Community Mesoscale Model (MC2). It is evaluated relying on a shear-driven ABL case allowing the authors to assess the model behavior at very high resolution as well as more specific numerical aspects such as the vertical discretization and time and space splitting of turbulence-related terms. The proposed LES-capable mesoscale model is shown to perform on par with other similar reference LES models, while being slightly more dissipative. A new vertical discretization of the turbulent processes eliminates a spurious numerical mode in the solution. Finally, the splitting of horizontal and vertical turbulence-related terms is shown to have no impact on the results of the test cases. It is thus demonstrated that the revised MC2 is suitable at both microscales and mesoscales, thus setting a strong foundation for future work.

Corresponding author address: Nicolas Gasset, 1706 Alexandre Desève, Montréal, QC H2L 2V9, Canada. E-mail: nicolas.gasset@gmail.com
Save
  • Andren, A., A. R. Brown, P. J. Mason, J. Graf, U. Schumann, C.-H. Moeng, and F. T. M. Nieuwstadt, 1994: Large-eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes. Quart. J. Roy. Meteor. Soc., 120, 14571484, doi:10.1002/qj.49712052003.

    • Search Google Scholar
    • Export Citation
  • Benoit, R., J. Côté, and J. Mailhot, 1989: Inclusion of a TKE boundary layer parameterization in the Canadian regional finite-element model. Mon. Wea. Rev., 117, 17261750, doi:10.1175/1520-0493(1989)117<1726:IOATBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benoit, R., M. Desgagné, P. Pellerin, S. Pellerin, Y. Chartier, and S. Desjardins, 1997: The Canadian MC2: A semi-Lagrangian, semi-implicit wideband atmospheric model suited for finescale process studies and simulation. Mon. Wea. Rev., 125, 23822415, doi:10.1175/1520-0493(1997)125<2382:TCMASL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brasseur, J. G., and T. Wei, 2010: Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scaling. Phys. Fluids,22, 021303, doi:10.1063/1.3319073.

  • Brown, A. R., S. H. Derbyshire, and P. J. Mason, 1994: Large-eddy simulation of stable atmospheric boundary layers with a revised stochastic subgrid model. Quart. J. Roy. Meteor. Soc., 120, 14851512, doi:10.1002/qj.49712052004.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., M. K. MacVean, and P. J. Mason, 2000: The effects of numerical dissipation in large eddy simulations. J. Atmos. Sci., 57, 33373348, doi:10.1175/1520-0469(2000)057<3337:TEONDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chow, F. K., and R. L. Street, 2009: Evaluation of turbulence closure models for large-eddy simulation over complex terrain: Flow over Askervein Hill. J. Appl. Meteor. Climatol., 48, 10501065, doi:10.1175/2008JAMC1862.1.

    • Search Google Scholar
    • Export Citation
  • Chow, F. K., R. L. Street, M. Xue, and J. H. Ferziger, 2005: Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci., 62, 20582077, doi:10.1175/JAS3456.1.

    • Search Google Scholar
    • Export Citation
  • Churchfield, M. J., G. Vijayakumar, J. G. Brasseur, and P. J. Moriarty, 2010: Wind energy-related atmospheric boundary layer large-eddy simulation using OpenFOAM. 19th Symp. on Boundary Layers and Turbulence, Keystone, CO, Amer. Meteor. Soc., 1B.6. [Available online at https://ams.confex.com/ams/19Ag19BLT9Urban/techprogram/paper_172636.htm.]

  • Cuxart, J., P. Bougeault, and J.-L. Redelsperger, 2000: A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteor. Soc., 126, 130, doi:10.1002/qj.49712656202.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • Delage, Y., 1997: Parameterising sub-grid scale vertical transport in atmospheric models under statically stable conditions. Bound.-Layer Meteor., 82, 2348, doi:10.1023/A:1000132524077.

    • Search Google Scholar
    • Export Citation
  • Delage, Y., and C. Girard, 1992: Stability functions correct at the free convection limit and consistent for both the surface and Ekman layers. Bound.-Layer Meteor., 58, 1931, doi:10.1007/BF00120749.

    • Search Google Scholar
    • Export Citation
  • Ding, F., P. S. Arya, and Y.-L. Lin, 2001: Large-eddy simulations of the atmospheric boundary layer using a new subgrid-scale model—I. Slightly unstable and neutral cases. Environ. Fluid Mech., 1, 2947, doi:10.1023/A:1011547800570.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., P. Carlotti, J.-L. Redelsperger, R. M. Banta, V. Masson, and R. K. Newsom, 2007: Numerical and experimental investigation of the neutral atmospheric surface layer. J. Atmos. Sci., 64, 137156, doi:10.1175/JAS3831.1.

    • Search Google Scholar
    • Export Citation
  • Favre, A., 1983: Turbulence: Space-time statistical properties and behavior in supersonic flows. Phys. Fluids, 26, 28512863, doi:10.1063/1.864049.

    • Search Google Scholar
    • Export Citation
  • Fitch, A. C., J. B. Olson, J. K. Lundquist, J. Dudhia, A. K. Gupta, J. Michalakes, and I. Barstad, 2012: Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Mon. Wea. Rev., 140, 30173038, doi:10.1175/MWR-D-11-00352.1.

    • Search Google Scholar
    • Export Citation
  • Gasset, N., 2013: Refinement of a mesoscale model for large eddy simulation. Ph.D. thesis, Dept. of Mechanical Engineering, École de technologie supérieure, 503 pp.

  • Girard, C., R. Benoit, and M. Desgagné, 2005: Finescale topography and the MC2 dynamics kernel. Mon. Wea. Rev., 133, 14631477, doi:10.1175/MWR2931.1.

    • Search Google Scholar
    • Export Citation
  • Kirkil, G., J. Mirocha, E. Bou-Zeid, F. K. Chow, and B. Kosović, 2012: Implementation and evaluation of dynamic subfilter-scale stress models for large-eddy simulation using WRF. Mon. Wea. Rev., 140, 266284, doi:10.1175/MWR-D-11-00037.1.

    • Search Google Scholar
    • Export Citation
  • Landberg, L., G. Giebel, H. A. Nielsen, T. S. Nielsen, and H. Madsen, 2003a: Short-term prediction—An overview. Wind Energy, 6, 273280, doi:10.1002/we.96.

    • Search Google Scholar
    • Export Citation
  • Landberg, L., L. Myllerup, O. Rathmann, E. L. Petersen, B. H. Jørgensen, J. Badger, and N. G. Mortensen, 2003b: Wind resource estimation—An overview. Wind Energy, 6, 261271, doi:10.1002/we.94.

    • Search Google Scholar
    • Export Citation
  • Lapointe-Thériault, D., 2012: Vers une résolution numérique de la couche limite atmosphérique à micro-échelle avec la méthode de simulation des grandes échelles (LES) sous OpenFOAM. M.Sc. thesis, Dept. of Mechanical Engineering, École de technologie superieure, 173 pp.

  • Laprise, R., D. Caya, G. Bergeron, and M. Giguère, 1997: The formulation of the André Robert MC2 (Mesoscale Compressible Community) Model. Atmos.–Ocean, 35, 195220, doi:10.1080/07055900.1997.9687348.

    • Search Google Scholar
    • Export Citation
  • Mailhot, J., and R. Benoit, 1982: A finite-element model of the atmospheric boundary layer suitable for use with numerical weather prediction models. J. Atmos. Sci., 39, 22492266, doi:10.1175/1520-0469(1982)039<2249:AFEMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mason, P. J., 1994: Large-eddy simulation: A critical review of the technique. Quart. J. Roy. Meteor. Soc., 120, 126, doi:10.1002/qj.49712051503.

    • Search Google Scholar
    • Export Citation
  • Mason, P. J., and D. J. Thomson, 1992: Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech., 242, 5178, doi:10.1017/S0022112092002271.

    • Search Google Scholar
    • Export Citation
  • Mason, P. J., and A. R. Brown, 1999: On subgrid models and filter operations in large eddy simulations. J. Atmos. Sci., 56, 21012114, doi:10.1175/1520-0469(1999)056<2101:OSMAFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and J. C. Wyngaard, 1988: Spectral analysis of large-eddy simulations of the convective boundary layer. J. Atmos. Sci., 45, 35733587, doi:10.1175/1520-0469(1988)045<3573:SAOLES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51, 9991022, doi:10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., J. Dudhia, J. Klemp, and P. Sullivan, 2007: Examining two-way grid nesting for large eddy simulation of the PBL using the WRF Model. Mon. Wea. Rev., 135, 22952311, doi:10.1175/MWR3406.1.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., P. J. Mason, C.-H. Moeng, and U. Schumann, 1993: Large-eddy simulation of the convective boundary layer: A comparison of four computer Codes. Turbul. Shear Flows,8,343367, doi:10.1007/978-3-642-77674-8_24.

  • Pelletier, C., J. Mailhot, A. P. Lock, and C. Girard, 2005: Three-dimensional turbulent diffusion in MC2. Working Notes, Recherche en Prévision Numérique, Environnement Canada, 48 pp.

  • Pielke, R. A., and M. E. Nicholls, 1997: Use of meteorological models in computational wind engineering. J. Wind Eng. Ind. Aerodyn., 67–68, 363372, doi:10.1016/S0167-6105(97)00086-X.

    • Search Google Scholar
    • Export Citation
  • Piomelli, U., 2008: Wall-layer models for large-eddy simulations. Prog. Aeronaut. Sci., 44, 437446, doi:10.1016/j.paerosci.2008.06.001.

    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows.Cambridge University Press, 771 pp.

  • Porté-Agel, F., C. Meneveau, and M. B. Parlange, 2000: A scale-dependent dynamic model for large-eddy simulation: Application to a neutral atmospheric boundary layer. J. Fluid Mech., 415, 261284, doi:10.1017/S0022112000008776.

    • Search Google Scholar
    • Export Citation
  • Shaw, W. J., J. K. Lundquist, and S. J. Schreck, 2009: Research needs for wind resource characterization. Bull. Amer. Meteor. Soc., 90, 535538, doi:10.1175/2008BAMS2729.1.

    • Search Google Scholar
    • Export Citation
  • Shuman, F. G., 1957: Numerical methods in weather prediction: II. Smoothing and filtering. Mon. Wea. Rev., 85, 357, doi:10.1175/1520-0493(1957)085<0357:NMIWPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steppeler, J., R. Hess, U. Schättler, and L. Bonaventura, 2003: Review of numerical methods for nonhydrostatic weather prediction models. Meteor. Atmos. Phys., 82, 287301, doi:10.1007/s00703-001-0593-8.

    • Search Google Scholar
    • Export Citation
  • Stoll, R., and F. Porté-Agel, 2006: Effect of roughness on surface boundary conditions for large-eddy simulation. Bound.-Layer Meteor., 118, 169187, doi:10.1007/s10546-005-4735-2.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Sullivan, P. P., J. C. McWilliams, and C.-H. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71, 247276, doi:10.1007/BF00713741.

    • Search Google Scholar
    • Export Citation
  • Sumner, J., C. Sibuet Watters, and C. Masson, 2010: CFD in wind energy: The virtual, multiscale wind tunnel. Energies, 3, 9891013, doi:10.3390/en3050989.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and Coauthors, 2008: Parameterization of the atmospheric boundary layer: A view from just above the inversion. Bull. Amer. Meteor. Soc., 89, 453458, doi:10.1175/BAMS-89-4-453.

    • Search Google Scholar
    • Export Citation
  • Thomas, S. J., C. Girard, R. Benoit, and P. Pellerin, 1998: A new adiabatic kernel for the MC2 model. Atmos.–Ocean, 36, 241270, doi:10.1080/07055900.1998.9649613.

    • Search Google Scholar
    • Export Citation
  • Wilcox, D. C., 1994: Turbulence Modeling for CFD. DCW Industries, Inc., 477 pp.

  • Wyngaard, J. C., 2004: Toward numerical modeling in the “Terra Incognita.” J. Atmos. Sci., 61, 18161826, doi:10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 173 46 3
PDF Downloads 101 33 4