A Comparison of Ensemble Kalman Filters for Storm Surge Assimilation

M. U. Altaf * King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, and Delft University of Technology, Delft, Netherlands

Search for other papers by M. U. Altaf in
Current site
Google Scholar
PubMed
Close
,
T. Butler Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver, Colorado

Search for other papers by T. Butler in
Current site
Google Scholar
PubMed
Close
,
T. Mayo Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas

Search for other papers by T. Mayo in
Current site
Google Scholar
PubMed
Close
,
X. Luo International Research Institute of Stavanger, Bergen, Norway

Search for other papers by X. Luo in
Current site
Google Scholar
PubMed
Close
,
C. Dawson Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas

Search for other papers by C. Dawson in
Current site
Google Scholar
PubMed
Close
,
A. W. Heemink Delft University of Technology, Delft, Netherlands

Search for other papers by A. W. Heemink in
Current site
Google Scholar
PubMed
Close
, and
I. Hoteit ** King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Search for other papers by I. Hoteit in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study evaluates and compares the performances of several variants of the popular ensemble Kalman filter for the assimilation of storm surge data with the advanced circulation (ADCIRC) model. Using meteorological data from Hurricane Ike to force the ADCIRC model on a domain including the Gulf of Mexico coastline, the authors implement and compare the standard stochastic ensemble Kalman filter (EnKF) and three deterministic square root EnKFs: the singular evolutive interpolated Kalman (SEIK) filter, the ensemble transform Kalman filter (ETKF), and the ensemble adjustment Kalman filter (EAKF). Covariance inflation and localization are implemented in all of these filters. The results from twin experiments suggest that the square root ensemble filters could lead to very comparable performances with appropriate tuning of inflation and localization, suggesting that practical implementation details are at least as important as the choice of the square root ensemble filter itself. These filters also perform reasonably well with a relatively small ensemble size, whereas the stochastic EnKF requires larger ensemble sizes to provide similar accuracy for forecasts of storm surge.

Corresponding author address: I. Hoteit, KAUST, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia. E-mail: ibrahim.hoteit@kaust.edu.sa

Abstract

This study evaluates and compares the performances of several variants of the popular ensemble Kalman filter for the assimilation of storm surge data with the advanced circulation (ADCIRC) model. Using meteorological data from Hurricane Ike to force the ADCIRC model on a domain including the Gulf of Mexico coastline, the authors implement and compare the standard stochastic ensemble Kalman filter (EnKF) and three deterministic square root EnKFs: the singular evolutive interpolated Kalman (SEIK) filter, the ensemble transform Kalman filter (ETKF), and the ensemble adjustment Kalman filter (EAKF). Covariance inflation and localization are implemented in all of these filters. The results from twin experiments suggest that the square root ensemble filters could lead to very comparable performances with appropriate tuning of inflation and localization, suggesting that practical implementation details are at least as important as the choice of the square root ensemble filter itself. These filters also perform reasonably well with a relatively small ensemble size, whereas the stochastic EnKF requires larger ensemble sizes to provide similar accuracy for forecasts of storm surge.

Corresponding author address: I. Hoteit, KAUST, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia. E-mail: ibrahim.hoteit@kaust.edu.sa
Save
  • Altaf, M. U., T. Butler, X. Luo, C. Dawson, T. Mayo, and H. Hoteit, 2013: Improving short-range ensemble Kalman storm surge forecasting using robust adaptive inflation. Mon. Wea. Rev., 141, 27052720, doi:10.1175/MWR-D-12-00310.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A, 210224, doi:10.1111/j.1600-0870.2006.00216.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, doi:10.1111/j.1600-0870.2008.00361.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 27412758, doi:10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beezley, J. D., and J. Mandel, 2008: Morphing ensemble Kalman filters. Tellus, 60A, 131140, doi:10.1111/j.1600-0870.2007.00275.x.

  • Bennet, A., 1992: Inverse Methods in Physical Oceanography.Cambridge University Press, 346 pp.

  • Berg, R., 2009: Tropical cyclone report: Hurricane Ike. National Hurricane Center Rep., 55 pp.

  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436, doi:10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blain, C. A., J. J. Westrink, and R. A. Luettich, 1995: Application of a domain size and gridding strategy in the prediction of hurricane storm surge. Computer Modeling of Seas and Coastal Regions II, L. C. Wrobel, C. A. Brebbia, and L. Traversoni, Eds., Computational Mechanics Publications, 301308.

  • Blake, E. S., C. W. Landsea, and E. J. Gibney, 2011: The deadliest, costliest, and most intense United States tropical cyclones from 1851 to 2010 (and other frequently requested hurricane facts). NOAA Tech. Memo. NWSNHC-6, 47 pp.

  • Bocquet, M., and P. Sakov, 2012: Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems. Nonlinear Processes Geophys., 19, 383399, doi:10.5194/npg-19-383-2012.

    • Search Google Scholar
    • Export Citation
  • Brown, J. D., T. Spencer, and I. Moeller, 2007: Modelling storm surge flooding of an urban area with particular reference to modelling uncertainties: A case study of Canvey Island, United Kingdom. Water Resour. Res., 43, W06402, doi:10.1029/2005WR004597.

    • Search Google Scholar
    • Export Citation
  • Bunya, S., and Coauthors, 2010: A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part I: Model development and validation. Mon. Wea. Rev., 138, 345377, doi:10.1175/2009MWR2906.1.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: On the analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 17191724, doi:10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Butler, T., M. U. Altaf, C. Dawson, I. Hoteit, X. Luo, and T. Mayo, 2012: Data assimilation within the advanced circulation (ADCIRC) modeling framework for hurricane storm surge forecasting. Mon. Wea. Rev., 140, 22152231, doi:10.1175/MWR-D-11-00118.1.

    • Search Google Scholar
    • Export Citation
  • Cohn, S. E., and R. Todling, 1996: Approximate data assimilation schemes for stable and unstable dynamics. J. Meteor. Soc. Japan, 74, 6375.

    • Search Google Scholar
    • Export Citation
  • Cohn, S. E., A. da Silva, J. Guo, M. Sienkiewicz, and D. Lamich, 1998: Assessing the effects of data selection with the DAO physical-space statistical analysis system. Mon. Wea. Rev., 126, 29132926, doi:10.1175/1520-0493(1998)126<2913:ATEODS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dietrich, J. C., and Coauthors, 2010: A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part II: Synoptic description and analyses of Hurricanes Katrina and Rita. Mon. Wea. Rev., 138, 378404, doi:10.1175/2009MWR2907.1.

    • Search Google Scholar
    • Export Citation
  • Dietrich, J. C., and Coauthors, 2011: Hurricane Gustav (2008) waves and storm surge: Hindcast, synoptic analysis, and validation in southern Louisiana. Mon. Wea. Rev., 139, 24882522, doi:10.1175/2011MWR3611.1.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367, doi:10.1007/s10236-003-0036-9.

    • Search Google Scholar
    • Export Citation
  • Fleming, J. G., C. W. Fulcher, R. A. Luettich, B. D. Estrade, G. D. Allen, and H. S. Winer, 2008: A real time storm surge forecasting system using ADCIRC. Estuarine and Coastal Modelling, M. L. Spaulding, Ed., American Society of Civil Engineers, 893–912, doi:10.1061/40990(324)48.

  • Greybush, S. J., E. Kalnay, T. Miyoshi, K. Ide, and B. R. Hunt, 2011: Balance and ensemble Kalman filter localization techniques. Mon. Wea. Rev., 139, 511522, doi:10.1175/2010MWR3328.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2011: What constrains spread growth in forecasts initialized from ensemble Kalman filters? Mon. Wea. Rev., 139, 117131, doi:10.1175/2010MWR3246.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790, doi:10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, J. L. Anderson, and C. Snyder, 2009: Comments on “Sigma-point Kalman filter data assimilation methods for strongly nonlinear systems.” J. Atmos. Sci., 66, 34983500, doi:10.1175/2009JAS3245.1.

    • Search Google Scholar
    • Export Citation
  • Heaps, N. S., 1983: Storm surges, 1967–1982. Geophys. J. Int., 74, 331376, doi:10.1111/j.1365-246X.1983.tb01883.x.

  • Holland, G., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 12121218, doi:10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hope, M. E., and Coauthors, 2013: Hindcast and validation of Hurricane Ike (2008) waves, forerunner, and storm surge. J. Geophys. Res. Oceans,118, 4424–4460, doi:10.1002/jgrc.20314.

  • Horn, R., and C. Johnson, 1991: Topics in Matrix Analysis.Cambridge University Press, 607 pp.

  • Hoteit, I., D. T. Pham, and J. Blum, 2002: A simplified reduced order Kalman filtering and application to altimetric data assimilation in tropical Pacific. J. Mar. Syst., 36, 101127, doi:10.1016/S0924-7963(02)00129-X.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., T. Hoar, G. Gopalakrishnan, J. Anderson, N. Collins, B. Cornuelle, A. Kohl, and P. Heimbach, 2013: A MITgcm/DART ensemble analysis and prediction system with application to the Gulf of Mexico. Dyn. Atmos. Oceans, 63, 123, doi:10.1016/j.dynatmoce.2013.03.002.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, doi:10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, doi:10.1016/j.physd.2006.11.008.

    • Search Google Scholar
    • Export Citation
  • Janjić, T., L. Nerger, A. Albertella, J. Schröter, and S. Skachko, 2011: On domain localization in ensemble-based Kalman filter algorithms. Mon. Wea. Rev., 139, 20462060, doi:10.1175/2011MWR3552.1.

    • Search Google Scholar
    • Export Citation
  • Kalman, R., 1960: A new approach to linear filtering and prediction problems. J. Fluids Eng.,82, 3545, doi:10.1115/1.3662552.

  • Kennedy, A., and Coauthors, 2011: Origin of the Hurricane Ike forerunner surge. Geophys. Res. Lett.,38, L08608, doi:10.1029/2011GL047090.

  • Luettich, R., and J. Westerink, 2005: ADCIRC: A parallel advanced circulation model for oceanic, coastal and estuarine waters. User’s manual for version 45.08. [Available online at http://adcirc.org/.]

  • Luo, X., and I. M. Moroz, 2009: Ensemble Kalman filter with the unscented transform. Physica D, 238, 549562, doi:10.1016/j.physd.2008.12.003.

    • Search Google Scholar
    • Export Citation
  • Luo, X., and I. Hoteit, 2011: Robust ensemble filtering and its relation to covariance inflation in the ensemble Kalman filter. Mon. Wea. Rev., 139, 39383953, doi:10.1175/MWR-D-10-05068.1.

    • Search Google Scholar
    • Export Citation
  • Luo, X., and I. Hoteit, 2012: Ensemble Kalman filtering with residual nudging. Tellus, 64A, 17130, doi:10.3402/tellusa.v64i0.17130.

  • Luo, X., and I. Hoteit, 2013: Covariance inflation in the ensemble Kalman filter: A residual nudging perspective and some implications. Mon. Wea. Rev., 141, 33603368, doi:10.1175/MWR-D-13-00067.1.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2007: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Mon. Wea. Rev., 135, 14031423, doi:10.1175/MWR3352.1.

    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., 2011: The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter. Mon. Wea. Rev., 139, 15191535, doi:10.1175/2010MWR3570.1.

    • Search Google Scholar
    • Export Citation
  • Nerger, L., W. Hiller, and J. Schröter, 2005: A comparison of error subspace Kalman filters. Tellus, 57A, 715735, doi:10.1111/j.1600-0870.2005.00141.x.

    • Search Google Scholar
    • Export Citation
  • Nerger, L., T. Janjić, J. Schröter, and W. Hiller, 2012a: A regulated localization scheme for ensemble-based Kalman filters. Quart. J. Roy. Meteor. Soc., 138, 802812, doi:10.1002/qj.945.

    • Search Google Scholar
    • Export Citation
  • Nerger, L., T. Janjić, J. Schröter, and W. Hiller, 2012b: A unification of ensemble square root Kalman filters. Mon. Wea. Rev., 140, 23352345, doi:10.1175/MWR-D-11-00102.1.

    • Search Google Scholar
    • Export Citation
  • Pham, D. T., 2001: Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon. Wea. Rev., 129, 11941207, doi:10.1175/1520-0493(2001)129<1194:SMFSDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pham, D. T., J. Verron, and M. C. Roubauda, 1998: Singular evolutive Kalman filters for data assimilation in oceanography. J. Mar. Syst., 16, 323340, doi:10.1016/S0924-7963(97)00109-7.

    • Search Google Scholar
    • Export Citation
  • Sakov, P., and L. Bertino, 2011: Relation between two common localisation methods for the EnKF. Comput. Geosci., 15, 225237, doi:10.1007/s10596-010-9202-6.

    • Search Google Scholar
    • Export Citation
  • Simon, D., 2006: Optimal State Estimation: Kalman, H-Infinity, and Nonlinear Approaches. Wiley-Interscience, 552 pp.

  • Tanaka, S., S. Bunya, J. J. Westerink, C. Dawson, and R. A. Luettich Jr., 2011: Scalability of an unstructured grid continuous Galerkin based hurricane storm surge model. J. Sci. Comput., 46, 329–358, doi:10.1007/s10915-010-9402-1.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131, 14851490, doi:10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Verlaan, M., and A. W. Heemink, 1997: Tidal flow forecasting using reduced rank square root filters. Stochastic Hydrol. Hydraul., 11, 349368, doi:10.1007/BF02427924.

    • Search Google Scholar
    • Export Citation
  • Wang, X., C. H. Bishop, and S. J. Julier, 2004: Which is better, an ensemble of positive–negative pairs or a centered simplex ensemble. Mon. Wea. Rev., 132, 15901605, doi:10.1175/1520-0493(2004)132<1590:WIBAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Westerink, J. J., and Coauthors, 2008: A basin- to channel-scale unstructured grid hurricane storm surge model applied to southern Louisiana. Mon. Wea. Rev., 136, 833864, doi:10.1175/2007MWR1946.1.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, doi:10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 30783089, doi:10.1175/MWR-D-11-00276.1.

    • Search Google Scholar
    • Export Citation
  • Wolf, P., 2003: 1953 U.K. floods: 50-year retrospective. Risk Management Solutions Rep., 11 pp. [Available online at http://storage.pardot.com/15772/68008/fl_1953_uk_floods_50_retrospective.pdf.]

  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 12381253, doi:10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zupanski, M., 2005: Maximum likelihood ensemble filter: Theoretical aspects. Mon. Wea. Rev., 133, 17101726, doi:10.1175/MWR2946.1.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3410 2777 330
PDF Downloads 298 63 2