The Impact of Targeted Dropwindsonde Observations on Tropical Cyclone Intensity Forecasts of Four Weak Systems during PREDICT

Ryan D. Torn Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Ryan D. Torn in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The value of assimilating targeted dropwindsonde observations meant to improve tropical cyclone intensity forecasts is evaluated using data collected during the Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) field project and a cycling ensemble Kalman filter. For each of the four initialization times studied, four different sets of Weather Research and Forecasting Model (WRF) ensemble forecasts are produced: one without any dropwindsonde data, one with all dropwindsonde data assimilated, one where a small subset of “targeted” dropwindsondes are identified using the ensemble-based sensitivity method, and a set of randomly selected dropwindsondes. For all four cases, the assimilation of dropwindsondes leads to an improved intensity forecast, with the targeted dropwindsonde experiment recovering at least 80% of the difference between the experiment where all dropwindsondes and no dropwindsondes are assimilated. By contrast, assimilating randomly selected dropwindsondes leads to a smaller impact in three of the four cases. In general, zonal and meridional wind observations at or below 700 hPa have the largest impact on the forecast due to the large sensitivity of the intensity forecast to the horizontal wind components at these levels and relatively large ensemble standard deviation relative to the assumed observation errors.

Corresponding author address: Ryan Torn, University at Albany, SUNY, ES 351, 1400 Washington Ave., Albany, NY 12222. E-mail: rtorn@albany.edu

Abstract

The value of assimilating targeted dropwindsonde observations meant to improve tropical cyclone intensity forecasts is evaluated using data collected during the Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) field project and a cycling ensemble Kalman filter. For each of the four initialization times studied, four different sets of Weather Research and Forecasting Model (WRF) ensemble forecasts are produced: one without any dropwindsonde data, one with all dropwindsonde data assimilated, one where a small subset of “targeted” dropwindsondes are identified using the ensemble-based sensitivity method, and a set of randomly selected dropwindsondes. For all four cases, the assimilation of dropwindsondes leads to an improved intensity forecast, with the targeted dropwindsonde experiment recovering at least 80% of the difference between the experiment where all dropwindsondes and no dropwindsondes are assimilated. By contrast, assimilating randomly selected dropwindsondes leads to a smaller impact in three of the four cases. In general, zonal and meridional wind observations at or below 700 hPa have the largest impact on the forecast due to the large sensitivity of the intensity forecast to the horizontal wind components at these levels and relatively large ensemble standard deviation relative to the assumed observation errors.

Corresponding author address: Ryan Torn, University at Albany, SUNY, ES 351, 1400 Washington Ave., Albany, NY 12222. E-mail: rtorn@albany.edu
Save
  • Aberson, S. D., 2003: Targeted observations to improve operational tropical cyclone track forecast guidance. Mon. Wea. Rev., 131, 16131628, doi:10.1175/2550.1.

    • Search Google Scholar
    • Export Citation
  • Aberson, S. D., 2008: Large forecast degradations due to synoptic surveillance during the 2004 and 2005 hurricane seasons. Mon. Wea. Rev., 136, 31383150, doi:10.1175/2007MWR2192.1.

    • Search Google Scholar
    • Export Citation
  • Aberson, S. D., 2010: 10 years of hurricane synoptic surveillance (1997–2006). Mon. Wea. Rev., 138, 15361549, doi:10.1175/2009MWR3090.1.

    • Search Google Scholar
    • Export Citation
  • Aberson, S. D., S. J. Majumdar, C. A. Reynolds, and B. J. Etherton, 2011: An observing system experiment for tropical cyclone targeting techniques using the Global Forecast System. Mon. Wea. Rev., 139, 895907, doi:10.1175/2010MWR3397.1.

    • Search Google Scholar
    • Export Citation
  • Aksoy, A., S. D. Aberson, T. Vukicevic, K. J. Sellwood, S. Lorsolo, and X. Zhang, 2013: Assimilation of high-resolution tropical cyclone observations with an ensemble Kalman filter using NOAA/AOML/HRD’s HEDAS: Evaluation of the 2008–11 vortex-scale analyses. Mon. Wea. Rev., 141, 18421865, doi:10.1175/MWR-D-12-00194.1.

    • Search Google Scholar
    • Export Citation
  • Ancell, B., and G. J. Hakim, 2007: Comparing adjoint and ensemble sensitivity analysis with applications to observation targeting. Mon. Wea. Rev., 135, 41174134, doi:10.1175/2007MWR1904.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, doi:10.1111/j.1600-0870.2008.00361.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Arellano, 2009: The data assimilation research testbed: A community data assimilation facility. Bull. Amer. Meteor. Soc., 90, 12831296, doi:10.1175/2009BAMS2618.1.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 89, 313333, doi:10.1175/BAMS-89-3-313.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., W. Huang, Y. R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914, doi:10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berger, H., R. H. Langland, C. S. Velden, C. A. Reynolds, and P. M. Pauley, 2011: Impact of enhanced satellite-derived atmospheric motion vector observations on numerical tropical cyclone track forecasts in the western North Pacific during TPARC/TCS-08. J. Appl. Meteor. Climatol., 50, 23092318, doi:10.1175/JAMC-D-11-019.1.

    • Search Google Scholar
    • Export Citation
  • Bergot, T., 2001: Influence of the assimilation scheme on the efficiency of adaptive observations. Quart. J. Roy. Meteor. Soc., 127, 635660, doi:10.1002/qj.49712757219.

    • Search Google Scholar
    • Export Citation
  • Beven, J. L., and E. S. Blake, 2014: Atlantic hurricane season of 2010. Mon. Wea. Rev., doi:10.1175/MWR-D-11-00264.1, in press.

  • Braun, S. A., J. A. Sippel, and D. S. Nolan, 2012: The impact of dry midlevel air on hurricane intensity in idealized simulations with no mean flow. J. Atmos. Sci., 69, 236257, doi:10.1175/JAS-D-10-05007.1.

    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., R. D. Torn, C. Snyder, C. Davis, W. Wang, and J. Done, 2013: Evaluation of the Advanced Hurricane WRF data assimilation system for the 2009 Atlantic hurricane season. Mon. Wea. Rev., 141, 523541, doi:10.1175/MWR-D-12-00139.1.

    • Search Google Scholar
    • Export Citation
  • Cheung, K. K. W., and R. L. Elsberry, 2002: Tropical cyclone formations over the western North Pacific in the Navy Operational Global Atmospheric Prediction System forecasts. Wea. Forecasting, 17, 800820, doi:10.1175/1520-0434(2002)017<0800:TCFOTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, K.-H., C.-C. Wu, P.-H. Lin, S. D. Aberson, M. Weissmann, F. Harnisch, and T. Nakazawa, 2011: The impact of dropwindsonde observations on typhoon track forecasts in DOTSTAR and T-PARC. Mon. Wea. Rev., 139, 17281743, doi:10.1175/2010MWR3582.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and D. A. Ahijevych, 2012: Mesoscale structural evolution of three tropical weather systems observed during PREDICT. J. Atmos. Sci., 69, 1284–1305, doi:10.1175/JAS-D-11-0225.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., W. Wang, J. Dudhia, and R. Torn, 2010: Does increased horizontal resolution improve hurricane wind forecasts. Wea. Forecasting, 25, 18261841, doi:10.1175/2010WAF2222423.1.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., C. A. Reynolds, C. Amerault, and J. Moskaitis, 2012: Adjoint sensitivity and predictability of tropical cyclogenesis. J. Atmos. Sci., 69, 35353557, doi:10.1175/JAS-D-12-0110.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, doi:10.5194/acp-9-5587-2009.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Jung, B.-J., H. M. Kim, Y.-H. Kim, E.-H. Jeon, and K.-H. Kim, 2010: Observation system experiments for Typhoon Jangmi (200815) observed during T-PARC. Asia-Pac. J. Atmos. Sci., 46, 305316, doi:10.1007/s13143-010-1007-y.

    • Search Google Scholar
    • Export Citation
  • Jung, B.-J., H. M. Kim, F. Zhang, and C.-C. Wu, 2012: Effect of targeted dropsonde observations and best track data on the track forecasts of Typhoon Sinlaku (2008) using an ensemble Kalman filter. Tellus, 64, 14984, doi:10.3402/tellusa.v64i0.14984.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunii, M., T. Miyoshi, and E. Kalnay, 2012: Estimating impact of real observations in regional numerical weather prediction using an ensemble Kalman filter. Mon. Wea. Rev., 140, 19751987, doi:10.1175/MWR-D-11-00205.1.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., 2005: Issues in targeted observing. Quart. J. Roy. Meteor. Soc., 131, 34093425, doi:10.1256/qj.05.130.

  • Langland, R. H., and N. L. Baker, 2004: Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus, 56A, 189201, doi:10.1111/j.1600-0870.2004.00056.x.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., C. Velden, P. M. Pauley, and H. Berger, 2009: Impact of satellite-derived rapid-scan wind observations on numerical model forecasts of Hurricane Katrina. Mon. Wea. Rev., 137, 16151622, doi:10.1175/2008MWR2627.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and Coauthors, 2012: The Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) Experiment: Scientific basis, new analysis tools, and some first results. Bull. Amer. Meteor. Soc., 93, 153–172, doi:10.1175/BAMS-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Nolan, D., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241266.

  • Poterjoy, J., and F. Zhang, 2011: Dynamics and structure of forecast error covariance in the core of a developing hurricane. J. Atmos. Sci., 68, 15861606, doi:10.1175/2011JAS3681.1.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395419, doi:10.1175/2008WAF2222128.1.

    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., D. S. Nolan, and K. A. Emanuel, 2010: Thermodynamic control of tropical cyclogenesis in environments of radiative-convective equilibrium with shear. Quart. J. Roy. Meteor. Soc., 136, 19541971, doi:10.1002/qj.706.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and C. López Carrillo, 2011: The vorticity budget of developing Typhoon Nuri (2008). Atmos. Chem. Phys., 11, 147163, doi:10.5194/acp-11-147-2011.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., and F. Zhang, 2008: A probabilistic analysis of the dynamics and predictability of tropical cyclogenesis. J. Atmos. Sci., 65, 34403459, doi:10.1175/2008JAS2597.1.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., and F. Zhang, 2010: Factors affecting the predictability of Hurricane Humberto (2007). J. Atmos. Sci., 67, 17591778, doi:10.1175/2010JAS3172.1.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., S. A. Braun, and C.-L. Shie, 2011: Environmental influences on the strength of Tropical Storm Debby (2006). J. Atmos. Sci., 68, 25572581, doi:10.1175/2011JAS3648.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the advanced research WRF version 2. NCAR Tech. Rep. NCAR/TN-468+STR, 88 pp.

  • Smith, R. K., and M. T. Montgomery, 2012: Observations of the convective environment in developing and non-developing tropical disturbances. Quart. J. Roy. Meteor. Soc., 138, 1721–1739, doi:10.1002/qj.1910.

    • Search Google Scholar
    • Export Citation
  • Snyder, A. D., Z. Pu, and Y. Zhu, 2010: Tracking and verification of east Atlantic tropical cyclone genesis in the NCEP global ensemble: Case studies during the NASA African Monsoon Multidisciplinary Analyses. Wea. Forecasting, 25, 13971411, doi:10.1175/2010WAF2222332.1.

    • Search Google Scholar
    • Export Citation
  • Szunyogh, I., Z. Toth, R. E. Morss, S. J. Majumdar, B. J. Etherton, and C. H. Bishop, 2000: The effect of targeted dropsonde observations during the 1999 winter storm reconnaissance program. Mon. Wea. Rev., 128, 35203537, doi:10.1175/1520-0493(2000)128<3520:TEOTDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Szunyogh, I., Z. Toth, A. V. Zimin, S. J. Majumdar, and A. Persson, 2002: Propagation of the effect of targeted observations: The 2000 Winter Storm Reconnaissance program. Mon. Wea. Rev., 130, 11441165, doi:10.1175/1520-0493(2002)130<1144:POTEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, doi:10.1175/2010JAS3318.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010a: Ensemble-based sensitivity analysis applied to African easterly waves. Wea. Forecasting, 25, 6178, doi:10.1175/2009WAF2222255.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010b: Performance of a mesoscale ensemble Kalman filter (EnKF) during the NOAA High-Resolution Hurricane test. Mon. Wea. Rev., 138, 43754392, doi:10.1175/2010MWR3361.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2008: Ensemble-based sensitivity analysis. Mon. Wea. Rev., 136, 663677, doi:10.1175/2007MWR2132.1.

  • Torn, R. D., and G. J. Hakim, 2009a: Ensemble data assimilation applied to RAINEX observations of Hurricane Katrina (2005). Mon. Wea. Rev., 137, 28172829, doi:10.1175/2009MWR2656.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2009b: Initial condition sensitivity of western Pacific extratropical transitions determined using ensemble-based sensitivity analysis. Mon. Wea. Rev., 137, 33883406, doi:10.1175/2009MWR2879.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and C. A. Davis, 2012: The influence of shallow convection on tropical cyclone track forecasts. Mon. Wea. Rev., 140, 21882197, doi:10.1175/MWR-D-11-00246.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and C. Snyder, 2012: Uncertainty of tropical cyclone best-track information. Wea. Forecasting, 27,715729, doi:10.1175/WAF-D-11-00085.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and D. Cook, 2013: The role of vortex and environment errors in Hurricanes Danielle and Karl (2010) genesis forecasts. Mon. Wea. Rev., 141, 232251, doi:10.1175/MWR-D-12-00086.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary conditions for limited-area ensemble Kalman filters. Mon. Wea. Rev., 134, 24902502, doi:10.1175/MWR3187.1.

    • Search Google Scholar
    • Export Citation
  • Velden, C., and Coauthors, 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86, 205223, doi:10.1175/BAMS-86-2-205.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and C. Fritz, 2012: A first look at the structure of the wave pouch during the 2009 PREDICT–GRIP dry runs over the Atlantic. Mon. Wea. Rev., 140, 11441163, doi:10.1175/MWR-D-10-05063.1.

    • Search Google Scholar
    • Export Citation
  • Weissmann, M. L., and Coauthors, 2011: The influence of assimilating dropsonde data on typhoon track and midlatitude forecasts. Mon. Wea. Rev., 139, 908920, doi:10.1175/2010MWR3377.1.

    • Search Google Scholar
    • Export Citation
  • Weng, Y., and F. Zhang, 2012: Assimilating airborne Doppler radar observations with an ensemble Kalman filter for convection-permitting hurricane initialization and prediction: Katrina (2005). Mon. Wea. Rev., 140, 841859, doi:10.1175/2011MWR3602.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2005: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 648 pp.

  • Willoughby, H. E., F. D. Marks, and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 31893211, doi:10.1175/1520-0469(1984)041<3189:SAMCBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., K.-H. Chou, P.-H. Lin, S. D. Aberson, M. Peng, and T. Nakazawa, 2007: The impact of dropwindsonde data on typhoon track forecasts in DOTSTAR. Wea. Forecasting, 22, 11571176, doi:10.1175/2007WAF2006062.1.

    • Search Google Scholar
    • Export Citation
  • Xie, B., F. Zhang, Q. Zhang, J. Poterjoy, and Y. Weng, 2013: Observing strategy and observation targeting for tropical cyclones using ensemble-based sensitivity analysis and data assimilation. Mon. Wea. Rev., 141, 14371453, doi:10.1175/MWR-D-12-00188.1.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, M., T. Iriguchi, T. Nakazawa, and C.-C. Wu, 2009: An observing system experiment for Typhoon Conson (2004) using a singular vector method and DOTSTAR data. Mon. Wea. Rev., 137, 28012816, doi:10.1175/2009MWR2683.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66, 19441961, doi:10.1175/2009JAS2824.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., and D. Tao, 2013: Impacts of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975–983, doi:10.1175/JAS-D-12-0133.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 11731185, doi:10.1175/1520-0469(2003)060<1173:EOMCOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Z. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 21052125, doi:10.1175/2009MWR2645.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 531 93 8
PDF Downloads 188 52 10