A Dryline in Southeast Wyoming. Part II: Airborne In Situ and Raman Lidar Observations

Philip T. Bergmaier Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Philip T. Bergmaier in
Current site
Google Scholar
PubMed
Close
,
Bart Geerts Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Bart Geerts in
Current site
Google Scholar
PubMed
Close
,
Zhien Wang Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Zhien Wang in
Current site
Google Scholar
PubMed
Close
,
Bo Liu Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Bo Liu in
Current site
Google Scholar
PubMed
Close
, and
Patrick C. Campbell Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Patrick C. Campbell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Part I of this study describes the mesoscale structure of a dryline over southeastern Wyoming. This dryline formed just east of the western rim of the high plains on 22 June 2010 and became more defined as it progressed eastward during the afternoon. Part I also describes the numerically simulated structure and evolution of this dryline and the observed initiation of deep convection in the vicinity of the dryline.

An instrumented aircraft, the University of Wyoming King Air, repeatedly flew across this dryline, mostly low enough to penetrate the moist-air wedge east of the dryline. Flight-level in situ data along these low-level penetrations indicate relatively high values of convective available potential energy (CAPE; >1500 J kg−1), yet low convective inhibition, within a few kilometers of the dryline. Water vapor transects obtained from a compact nadir-pointing Raman lidar aboard the aircraft reveal an extremely sharp humidity gradient below flight level along the dryline, coinciding with the fineline seen in operational weather radar base reflectivity imagery. They also reveal several plumes of higher specific humidity within the dry elevated mixed layer above the moist-air wedge, possibly precursors of cumulus clouds. The vertical structure of the dryline revealed by Raman lidar and the flight-level data correspond well to that in the high-resolution numerical simulation.

Corresponding author address: Philip T. Bergmaier, Dept. of Atmospheric Science, University of Wyoming, 1000 East University Ave., Laramie, WY 82071. E-mail: pbergmai@uwyo.edu

Abstract

Part I of this study describes the mesoscale structure of a dryline over southeastern Wyoming. This dryline formed just east of the western rim of the high plains on 22 June 2010 and became more defined as it progressed eastward during the afternoon. Part I also describes the numerically simulated structure and evolution of this dryline and the observed initiation of deep convection in the vicinity of the dryline.

An instrumented aircraft, the University of Wyoming King Air, repeatedly flew across this dryline, mostly low enough to penetrate the moist-air wedge east of the dryline. Flight-level in situ data along these low-level penetrations indicate relatively high values of convective available potential energy (CAPE; >1500 J kg−1), yet low convective inhibition, within a few kilometers of the dryline. Water vapor transects obtained from a compact nadir-pointing Raman lidar aboard the aircraft reveal an extremely sharp humidity gradient below flight level along the dryline, coinciding with the fineline seen in operational weather radar base reflectivity imagery. They also reveal several plumes of higher specific humidity within the dry elevated mixed layer above the moist-air wedge, possibly precursors of cumulus clouds. The vertical structure of the dryline revealed by Raman lidar and the flight-level data correspond well to that in the high-resolution numerical simulation.

Corresponding author address: Philip T. Bergmaier, Dept. of Atmospheric Science, University of Wyoming, 1000 East University Ave., Laramie, WY 82071. E-mail: pbergmai@uwyo.edu
Save
  • Atkins, N. T., R. M. Wakimoto, and C. L. Ziegler, 1998: Observations of the finescale structure of a dryline during VORTEX 95. Mon. Wea. Rev., 126, 525550, doi:10.1175/1520-0493(1998)126<0525:OOTFSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., 1984: Daytime boundary-layer evolution over mountainous terrain. Part I: Observations of the dry circulations. Mon. Wea. Rev., 112, 340356, doi:10.1175/1520-0493(1984)112<0340:DBLEOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., 1986: Daytime boundary layer evolution over mountainous terrain. Part II: Numerical studies of upslope flow duration. Mon. Wea. Rev., 114, 11121130, doi:10.1175/1520-0493(1986)114<1112:DBLEOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1982: Saturation point analysis of moist convective overturning. J. Atmos. Sci., 39, 14841505, doi:10.1175/1520-0469(1982)039<1484:SPAOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buban, M. S., C. L. Ziegler, E. N. Rasmussen, and Y. P. Richardson, 2007: The dryline on 22 May 2002 during IHOP: Ground-radar and in situ data analyses of the dryline and boundary layer evolution. Mon. Wea. Rev., 135, 24732505, doi:10.1175/MWR3453.1.

    • Search Google Scholar
    • Export Citation
  • Campbell, P. C., B. Geerts, and P. T. Bergmaier, 2014: A dryline in southeast Wyoming. Part I: Multiscale analysis using observations and modeling on 22 June 2010. Mon. Wea. Rev., 142, 268289, doi:10.1175/MWR-D-13-00049.1.

    • Search Google Scholar
    • Export Citation
  • Crawford, T. M., and H. B. Bluestein, 1997: Characteristics of dryline passage during COPS-91. Mon. Wea. Rev., 125, 463477, doi:10.1175/1520-0493(1997)125<0463:CODPDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Demoz, B., and Coauthors, 2006: Dryline on 22 May 2002 during IHOP: Convective scale measurements at the profiling site. Mon. Wea. Rev., 134, 294310, doi:10.1175/MWR3054.1.

    • Search Google Scholar
    • Export Citation
  • Di Girolamo, P., A. Behrendt, and V. Wulfmeyer, 2006: Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: Performance simulations. Appl. Opt., 45, 24742494, doi:10.1364/AO.45.002474.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1958: Structure and movement of a dry front. Bull. Amer. Meteor. Soc., 32, 574582.

  • Geerts, B., 2008: Dryline characteristics near Lubbock, Texas, based on radar and West Texas Mesonet data for May 2005 and May 2006. Wea. Forecasting, 23, 392406, doi:10.1175/2007WAF2007044.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., R. Damiani, and S. Haimov, 2006: Finescale vertical structure of a cold front as revealed by an airborne Doppler radar. Mon. Wea. Rev., 134, 251271, doi:10.1175/MWR3056.1.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., C. L. Ziegler, and H. B. Bluestein, 1993: Investigation of the dryline and convective storms initiated along the dryline: Field experiments during COPS-91. Bull. Amer. Meteor. Soc., 74, 21332145, doi:10.1175/1520-0477(1993)074<2133:IOTDAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., H. B. Bluestein, T. M. Crawford, M. E. Baldwin, and R. M. Rabin, 1997: Severe thunderstorm development in relation to along-dryline variability: A case study. Mon. Wea. Rev., 125, 231251, doi:10.1175/1520-0493(1997)125<0231:STDIRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heaps, W. S., and J. Burris, 1996: Airborne Raman lidar. Appl. Opt., 35, 71287135, doi:10.1364/AO.35.007128.

  • Koch, S. E., and J. McCarthy, 1982: The evolution of an Oklahoma dryline. Part II: Boundary-layer forcing of mesoconvective systems. J. Atmos. Sci., 39, 237257, doi:10.1175/1520-0469(1982)039<0237:TEOAOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes.John Wiley and Sons, 407 pp.

  • Miao, Q., and B. Geerts, 2007: Finescale vertical structure and dynamics of some dryline boundaries observed in IHOP. Mon. Wea. Rev., 135, 41614184, doi:10.1175/2007MWR1982.1.

    • Search Google Scholar
    • Export Citation
  • Murphey, H. V., R. M. Wakimoto, C. Flamant, and D. E. Kingsmill, 2006: Dryline on 19 June 2002 during IHOP. Part I: Airborne Doppler and LEANDRE II analyses of the thin line structure and convection initiation. Mon. Wea. Rev., 134, 406430, doi:10.1175/MWR3063.1.

    • Search Google Scholar
    • Export Citation
  • NSSP Staff, 1963: Environmental and thunderstorm structures as shown by National Severe Storms Project observations in spring 1960 and 1961. Mon. Wea. Rev., 91, 271292, doi:10.1175/1520-0493-91.6.271.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., M. A. Shapiro, R. M. Hardesty, R. J. Zamora, and J. M. Intrieri, 1991: The finescale structure of a west Texas dryline. Mon. Wea. Rev., 119, 12421258, doi:10.1175/1520-0493(1991)119<1242:TFSOAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., M. A. Shapiro, and E. Miller, 2000: The mesoscale structure of a nocturnal dryline and of a frontal–dryline merger. Mon. Wea. Rev., 128, 38243838, doi:10.1175/1520-0493(2001)129<3824:TMSOAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rhea, J. O., 1966: A study of thunderstorm formation along dry lines. J. Appl. Meteor., 5, 5863, doi:10.1175/1520-0450(1966)005,0058:ASOTFA.2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Russell, R. W., and J. W. Wilson, 1997: Radar-observed “fine lines” in the optically clear boundary layer: Reflectivity contributions from aerial plankton and its predators. Bound.-Layer Meteor., 82, 235262, doi:10.1023/A:1000237431851.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1974: A simulative model of dryline motion. J. Atmos. Sci., 31, 956964, doi:10.1175/1520-0469(1974)031<0956:ASMODM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1986: The dryline. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 549–572.

  • Schultz, D. M., C. C. Weiss, and P. M. Hoffman, 2007: The synoptic regulation of dryline intensity. Mon. Wea. Rev., 135, 16991709, doi:10.1175/MWR3376.1.

    • Search Google Scholar
    • Export Citation
  • Sipprell, B., and B. Geerts, 2007: Fine-scale vertical structure and evolution of a preconvective dryline on 19 June 2002. Mon. Wea. Rev., 135, 21112134, doi:10.1175/MWR3354.1.

    • Search Google Scholar
    • Export Citation
  • Sun, W. Y., and Y. Ogura, 1979: Boundary layer forcing as a possible trigger to a squall line formation. J. Atmos. Sci., 36, 235254, doi:10.1175/1520-0469(1979)036<0235:BLFAAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, N. M., and Coauthors, 2011: The Understanding Severe Thunderstorms and Alberta Boundary Layers Experiment (UNSTABLE) 2008. Bull. Amer. Meteor. Soc., 92, 739763, doi:10.1175/2011BAMS2994.1.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and H. V. Murphey, 2009: Analysis of a dryline during IHOP: Implications for convection initiation. Mon. Wea. Rev., 137, 912936, doi:10.1175/2008MWR2584.1.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., H. V. Murphey, E. V. Browell, and S. Ismail, 2006: The “triple point” on 24 May 2002 during IHOP. Part I: Airborne Doppler and LASE analyses of the frontal boundaries and convection initiation. Mon. Wea. Rev., 134, 231250, doi:10.1175/MWR3066.1.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253277, doi:10.1175/BAMS-85-2-253.

    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., and H. B. Bluestein, 2002: Airborne pseudo–dual Doppler analysis of a dryline–outflow boundary intersection. Mon. Wea. Rev., 130, 12071226, doi:10.1175/1520-0493(2002)130<1207:APDDAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., H. B. Bluestein, A. L. Pazmany, and B. Geerts, 2008: Finescale radar observations of a dryline during the International H2O Project (IHOP_2002). Synoptic—Dynamic Meteorology and Weather Analysis and Forecasting, Meteor. Monogr., No. 33, Amer. Meteor. Soc., 203–227.

  • Whiteman, D. N., G. Schwemmer, T. Berkoff, H. Plotkin, L. Ramos-Izquierdo, and G. Pappalardo, 2001: Performance modeling of an airborne Raman water vapor lidar. Appl. Opt., 40, 375390, doi:10.1364/AO.40.000375.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., and Coauthors, 2010: Airborne and ground-based measurements using a high-performance Raman Lidar. J. Atmos. Oceanic Technol., 27, 17811801, doi:10.1175/2010JTECHA1391.1.

    • Search Google Scholar
    • Export Citation
  • Xue, M., 2002: Density currents in shear flows: Effects of rigid lid and cold-pool internal circulation, and application to squall line dynamics. Quart. J. Roy. Meteor. Soc., 128, 4774, doi:10.1256/00359000260498789.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and W. J. Martin, 2006a: A high-resolution modeling study of the 24 May 2002 dryline case during IHOP. Part I: Numerical simulation and general evolution of the dryline and convection. Mon. Wea. Rev., 134, 149171, doi:10.1175/MWR3071.1.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and W. J. Martin, 2006b: A high-resolution modeling study of the 24 May 2002 dryline case during IHOP. Part II: Horizontal convective rolls and convective initiation. Mon. Wea. Rev., 134, 172191, doi:10.1175/MWR3072.1.

    • Search Google Scholar
    • Export Citation
  • Xue, M., Q. Xu, and K. K. Droegemeier, 1997: A theoretical and numerical study of density currents in nonconstant shear flows. J. Atmos. Sci., 54, 19982019, doi:10.1175/1520-0469(1997)054<1998:ATANSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and C. E. Hane, 1993: An observational study of the dryline. Mon. Wea. Rev., 121, 11341151, doi:10.1175/1520-0493(1993)121<1134:AOSOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13, 11061131, doi:10.1175/1520-0434(1998)013<1106:TIOMCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., T. J. Lee, and R. A. Pielke Sr., 1997: Convection initiation at the dryline: A modeling study. Mon. Wea. Rev., 125, 10011026, doi:10.1175/1520-0493(1997)125<1001:CIATDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 194 59 5
PDF Downloads 93 45 9