On the Limits of Estimating the Maximum Wind Speeds in Hurricanes

David S. Nolan Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by David S. Nolan in
Current site
Google Scholar
PubMed
Close
,
Jun A. Zhang Cooperative Institute for Marine and Atmospheric Science, University of Miami, and Hurricane Research Division, NOAA/AOML, Miami, Florida

Search for other papers by Jun A. Zhang in
Current site
Google Scholar
PubMed
Close
, and
Eric W. Uhlhorn Hurricane Research Division, NOAA/AOML, Miami, Florida

Search for other papers by Eric W. Uhlhorn in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This study uses an observing system simulation experiment (OSSE) approach to test the limitations of even nearly ideal observing systems to capture the peak wind speed occurring within a tropical storm or hurricane. The dataset is provided by a 1-km resolution simulation of an Atlantic hurricane with surface wind speeds saved every 10 s. An optimal observing system consisting of a dense field of anemometers provides perfect measurements of the peak 1-min wind speed as well as the average peak wind speed. Suboptimal observing systems consisting of a small number of anemometers are sampled and compared to the truth provided by the optimal observing system. Results show that a single, perfect anemometer experiencing a direct hit by the right side of the eyewall will underestimate the actual peak intensity by 10%–20%. Even an unusually large number of anemometers (e.g., 3–5) experiencing direct hits by the storm together will underestimate the peak wind speeds by 5%–10%. However, the peak winds of just one or two anemometers will provide on average a good estimate of the average peak intensity over several hours. Enhancing the variability of the simulated winds to better match observed winds does not change the results. Adding observational errors generally increases the reported peak winds, thus reducing the underestimates. If the average underestimate (negative bias) were known perfectly for each case, it could be used to correct the wind speeds, leaving only mean absolute errors of 3%–5%.

Corresponding author address: Prof. David S. Nolan, RSMAS/MPO, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: dnolan@rsmas.miami.edu

Abstract

This study uses an observing system simulation experiment (OSSE) approach to test the limitations of even nearly ideal observing systems to capture the peak wind speed occurring within a tropical storm or hurricane. The dataset is provided by a 1-km resolution simulation of an Atlantic hurricane with surface wind speeds saved every 10 s. An optimal observing system consisting of a dense field of anemometers provides perfect measurements of the peak 1-min wind speed as well as the average peak wind speed. Suboptimal observing systems consisting of a small number of anemometers are sampled and compared to the truth provided by the optimal observing system. Results show that a single, perfect anemometer experiencing a direct hit by the right side of the eyewall will underestimate the actual peak intensity by 10%–20%. Even an unusually large number of anemometers (e.g., 3–5) experiencing direct hits by the storm together will underestimate the peak wind speeds by 5%–10%. However, the peak winds of just one or two anemometers will provide on average a good estimate of the average peak intensity over several hours. Enhancing the variability of the simulated winds to better match observed winds does not change the results. Adding observational errors generally increases the reported peak winds, thus reducing the underestimates. If the average underestimate (negative bias) were known perfectly for each case, it could be used to correct the wind speeds, leaving only mean absolute errors of 3%–5%.

Corresponding author address: Prof. David S. Nolan, RSMAS/MPO, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: dnolan@rsmas.miami.edu
Save
  • Aberson, S. D., M. L. Black, R. A. Black, R. W. Burpee, J. J. Cione, C. W. Landsea, and F. D. Marks, 2006: Thirty years of tropical cyclone research with the NOAA P-3 aircraft. Bull. Amer. Meteor. Soc., 87, 10391055, doi:10.1175/BAMS-87-8-1039.

    • Search Google Scholar
    • Export Citation
  • Atkinson, G. D., and C. R. Holliday, 1977: Tropical cyclone minimum sea level pressure/maximum sustained wind relationship for the western North Pacific. Mon. Wea. Rev., 105, 421427, doi:10.1175/1520-0493(1977)105<0421:TCMSLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brennan, M. J., C. C. Hennon, and R. D. Knabb, 2009: The operational use of QuikSCAT ocean surface vector winds at the National Hurricane Center. Wea. Forecasting, 24, 621645, doi:10.1175/2008WAF2222188.1.

    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., M. DeMaria, J. A. Knaff, and T. H. Vonder Haar, 2004: Evaluation of Advanced Microwave Sounding Unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor., 43, 282296, doi:10.1175/1520-0450(2004)043<0282:EOAMSU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., M. DeMaria, and J. A. Knaff, 2006: Improvement of Advanced Microwave Sounding Unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45, 15731581, doi:10.1175/JAM2429.1.

    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. 11, 45 pp. [Available from NOAA/NESDIS, 5200 Auth Rd., Washington, DC 20333.]

  • Franklin, J. L., M. L. Black, and K. Valde, 2003: GPS dropwindsonde profiles in hurricanes and their operational implications. Wea. Forecasting, 18, 3244, doi:10.1175/1520-0434(2003)018<0032:GDWPIH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gilhousen, D. B., 1987: A field evaluation of NDBC moored buoy winds. J. Atmos. Oceanic Technol., 4, 94104, doi:10.1175/1520-0426(1987)004<0094:AFEONM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harper, B. A., J. D. Kepert, and J. D. Ginger, 2010: Guidelines for converting between various wind averaging periods in tropical cyclone conditions. World Meteorological Organization, TCP Sub-Project Rep., WMO/TD-1555, 54 pp.

  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropsonde. Bull. Amer. Meteor. Soc., 80, 407420, doi:10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Howden, S., D. Gilhousen, N. Guinasso, J. Walpert, M. Sturgeon, and L. Bender, 2008: Hurricane Katrina winds measured by a buoy-mounted sonic anemometer. J. Atmos. Oceanic Technol., 25, 607616, doi:10.1175/2007JTECHO518.1.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 280 pp.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., and R. M. Zehr, 2007: Reexamination of tropical cyclone wind–pressure relationships. Wea. Forecasting, 22, 7188, doi:10.1175/WAF965.1.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and Coauthors, 2004: The Atlantic hurricane database re-analysis project: Documentation for 1851-1910. Alterations and additions to the HURDAT. Hurricanes and Typhoons Past, Present and Future, R. J. Murname and K.-B. Liu, Eds., Columbia University Press, 177–221.

  • Marks, F. D., and R. A. Houze, 1984: Airborne doppler radar observations in Hurricane Debby. Bull. Amer. Meteor. Soc., 65, 569582, doi:10.1175/1520-0477(1984)065<0569:ADROIH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., P. G. Black, M. T. Montgomery, and R. W. Burpee, 2008: Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 12371259, doi:10.1175/2007MWR2073.1.

    • Search Google Scholar
    • Export Citation
  • Masters, F. J., 2004: Measurement, modeling and simulation of ground level tropical cyclone winds. Ph.D. dissertation, University of Florida, 188 pp.

  • Nolan, D. S., M. T. Montgomery, and L. D. Grasso, 2001: The wavenumber-one instability and trochoidal motion of hurricane-like vortices. J. Atmos. Sci., 58, 32433270, doi:10.1175/1520-0469(2001)058<3243:TWOIAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., J. A. Zhang, and D. P. Stern, 2009: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and the outer-core boundary layer. Mon. Wea. Rev., 137, 36513674, doi:10.1175/2009MWR2785.1.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., R. Atlas, K. T. Bhatia, and L. R. Bucci, 2013: Development and validation of a hurricane nature run using the joint OSSE nature run and the WRF model. J. Adv. Model. Earth. Syst., 5, 382405, doi:10.1002/jame.20031.

    • Search Google Scholar
    • Export Citation
  • Office of the Federal Coordinator for Meteorological Services and Supporting Research, 2012: National hurricane operations plan. FCM-P12-2012, U.S. Department of Commerce/ National Atmospheric and Oceanic Administration, Washington, DC, 186 pp. [Available online at http://www.ofcm.gov/nhop/12/nhop12.htm.]

  • Rappaport, E. N., and Coauthors, 2009: Advances and challenges and the National Hurricane Center. Wea. Forecasting, 24, 395419, doi:10.1175/2008WAF2222128.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 16531680, doi:10.1175/1520-0493(2000)128<1653:LWSAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. F. Bosart, 2005: Mesoscale observations of the genesis of Hurricane Dolly (1996). J. Atmos. Sci., 62, 31513171, doi:10.1175/JAS3540.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, doi:10.1175/MWR2830.1.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and D. S. Nolan, 2009: Reexamining the vertical structure of the tangential winds in tropical cyclones: Observations and theory. J. Atmos. Sci., 66, 35793600, doi:10.1175/2009JAS2916.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and C. Snyder, 2012: Uncertainty of tropical cyclone best-track information. Wea. Forecasting, 27, 715729, doi:10.1175/WAF-D-11-00085.1.

    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., and P. G. Black, 2003: Verification of remotely sensed sea surface winds in hurricanes. J. Atmos. Oceanic Technol., 20, 99116, doi:10.1175/1520-0426(2003)020<0099:VORSSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., and D. S. Nolan, 2012: Observational undersampling in tropical cyclones and implications for estimated intensity. Mon. Wea. Rev., 140, 825840, doi:10.1175/MWR-D-11-00073.1.

    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., P. G. Black, J. L. Franklin, M. Goodberlet, J. Carswell, and A. S. Goldstein, 2007: Hurricane sea surface wind measurements from an operational Stepped Frequency Microwave Radiometer. Mon. Wea. Rev., 135, 30703085, doi:10.1175/MWR3454.1.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and Coauthors, 2006: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteor. Soc., 87, 11951210, doi:10.1175/BAMS-87-9-1195.

    • Search Google Scholar
    • Export Citation
  • WMO, 2008: Guide to meteorological instruments and methods for observation. World Meteorological Organization, WMO Rep. 8, 7th ed. 716 pp.

  • Zhang, J. A., P. Zhu, F. J. Masters, R. F. Rogers, and F. D. Marks, 2011: On momentum transport and dissipative heating during hurricane landfalls. J. Atmos. Sci., 68, 13971404, doi:10.1175/JAS-D-10-05018.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., J. A. Zhang, and F. J. Masters, 2010: Wavelet analysis of turbulence under hurricane landfalls. J. Atmos. Sci., 67, 37933805, doi:10.1175/2010JAS3437.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2154 1280 404
PDF Downloads 813 188 9