Verification of European Subseasonal Wind Speed Forecasts

Kieran J. Lynch Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Kieran J. Lynch in
Current site
Google Scholar
PubMed
Close
,
David J. Brayshaw Department of Meteorology, University of Reading, and National Centre for Atmospheric Science, Reading, United Kingdom

Search for other papers by David J. Brayshaw in
Current site
Google Scholar
PubMed
Close
, and
Andrew Charlton-Perez Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Andrew Charlton-Perez in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Analysis of the forecasts and hindcasts from the ECMWF 32-day forecast model reveals that there is statistically significant skill in predicting weekly mean wind speeds over areas of Europe at lead times of at least 14–20 days. Previous research on wind speed predictability has focused on the short- to medium-range time scales, typically finding that forecasts lose all skill by the later part of the medium-range forecast. To the authors’ knowledge, this research is the first to look beyond the medium-range time scale by taking weekly mean wind speeds, instead of averages at hourly or daily resolution, for the ECMWF monthly forecasting system. It is shown that the operational forecasts have high levels of correlation (~0.6) between the forecasts and observations over the winters of 2008–12 for some areas of Europe. Hindcasts covering 20 winters show a more modest level of correlation but are still skillful. Additional analysis examines the probabilistic skill for the United Kingdom with the application of wind power forecasting in mind. It is also shown that there is forecast “value” for end users (operating in a simple cost/loss ratio decision-making framework). End users that are sensitive to winter wind speed variability over the United Kingdom, Germany, and some other areas of Europe should therefore consider forecasts beyond the medium-range time scale as it is clear there is useful information contained within the forecast.

Denotes Open Access content.

Corresponding author address: Kieran J. Lynch, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom. E-mail: k.j.lynch@pgr.reading.ac.uk

Abstract

Analysis of the forecasts and hindcasts from the ECMWF 32-day forecast model reveals that there is statistically significant skill in predicting weekly mean wind speeds over areas of Europe at lead times of at least 14–20 days. Previous research on wind speed predictability has focused on the short- to medium-range time scales, typically finding that forecasts lose all skill by the later part of the medium-range forecast. To the authors’ knowledge, this research is the first to look beyond the medium-range time scale by taking weekly mean wind speeds, instead of averages at hourly or daily resolution, for the ECMWF monthly forecasting system. It is shown that the operational forecasts have high levels of correlation (~0.6) between the forecasts and observations over the winters of 2008–12 for some areas of Europe. Hindcasts covering 20 winters show a more modest level of correlation but are still skillful. Additional analysis examines the probabilistic skill for the United Kingdom with the application of wind power forecasting in mind. It is also shown that there is forecast “value” for end users (operating in a simple cost/loss ratio decision-making framework). End users that are sensitive to winter wind speed variability over the United Kingdom, Germany, and some other areas of Europe should therefore consider forecasts beyond the medium-range time scale as it is clear there is useful information contained within the forecast.

Denotes Open Access content.

Corresponding author address: Kieran J. Lynch, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom. E-mail: k.j.lynch@pgr.reading.ac.uk
Save
  • Arribas, A., and Coauthors, 2011: The GloSea4 ensemble prediction system for seasonal forecasting. Mon. Wea. Rev., 139, 18911910, doi:10.1175/2010MWR3615.1.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., K. Martin, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 13371351, doi:10.1002/qj.289.

    • Search Google Scholar
    • Export Citation
  • Bell, C., L. Gray, A. Charlton-Perez, M. Joshi, and A. Scaife, 2009: Stratospheric communication of El Niño teleconnections to European winter. J. Climate, 22, 40834096, doi:10.1175/2009JCLI2717.1.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., T. Petroliagis, T. Palmer, J. Barkmeijer, M. Hamrud, A. Hollingsworth, A. Simmons, and N. Wedi, 1998: Impact of model resolution and ensemble size on the performance of an Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 124, 19351960, doi:10.1002/qj.49712455008.

    • Search Google Scholar
    • Export Citation
  • BVG Associates, 2012: A guide to an offshore wind farm. Tech. Rep., Crown Estate, 71 pp. [Available online at www.thecrownestate.co.uk/media/211144/guide_to_offshore_windfarm.pdf.]

  • Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature, 455, 523527, doi:10.1038/nature07286.

    • Search Google Scholar
    • Export Citation
  • Decker, M., M. A. Brunke, Z. Wang, K. Sakaguchi, X. Zeng, and M. G. Bosilovich, 2012: Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J. Climate, 25, 19161944, doi:10.1175/JCLI-D-11-00004.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Foley, A. M., P. G. Leahy, A. Marvuglia, and E. J. McKeogh, 2012: Current methods and advances in forecasting of wind power generation. Renewable Energy, 37, 18, doi:10.1016/j.renene.2011.05.033.

    • Search Google Scholar
    • Export Citation
  • Füss, R., S. Mahringer, and M. Prokopczuk, 2013: Electricity derivatives pricing with forward-looking information. Working Papers on Finance 2013/17, University of St. Gallen, St. Gallen, Switzerland, 65 pp., doi:10.2139/ssrn.2219855.

  • Gneiting, T., 2011: Quantiles as optimal point forecasts. Int. J. Forecasting, 27, 197207, doi:10.1016/j.ijforecast.2009.12.015.

  • Hagedorn, R., R. Buizza, T. M. Hamill, M. Leutbecher, and T. N. Palmer, 2012: Comparing TIGGE multimodel forecasts with reforecast-calibrated ECMWF ensemble forecasts. Quart. J. Roy. Meteor. Soc., 138, 18141827, doi:10.1002/qj.1895.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, Y. Xue, W. Wang, and B. Jha, 2011: Persistent atmospheric and oceanic anomalies in the North Atlantic from summer 2009 to summer 2010. J. Climate, 24, 58125830, doi:10.1175/2011JCLI4213.1.

    • Search Google Scholar
    • Export Citation
  • Hudson, D., O. Alves, H. H. Hendon, and A. G. Marshall, 2011: Bridging the gap between weather and seasonal forecasting: Intraseasonal forecasting for Australia. Quart. J. Roy. Meteor. Soc., 137, 673689, doi:10.1002/qj.769.

    • Search Google Scholar
    • Export Citation
  • Ineson, S., and A. Scaife, 2009: The role of the stratosphere in the European climate response to El Niño. Nat. Geosci., 2, 3236, doi:10.1038/ngeo381.

    • Search Google Scholar
    • Export Citation
  • Jolliffe, I., and D. Stephenson, Eds., 2011: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. 2nd ed. John Wiley, 292 pp.

  • Jung, T., M. J. Miller, and T. N. Palmer, 2010: Diagnosing the origin of extended-range forecast errors. Mon. Wea. Rev., 138, 24342446, doi:10.1175/2010MWR3255.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H. and R. N. Maue, 2012: Recent Northern Hemisphere mid-latitude medium-range deterministic forecast skill. Tellus,64A, 17531, doi:10.3402/tellusa.v64i0.17531.

  • Lin, H., G. Brunet, and J. S. Fontecilla, 2010: Impact of the Madden-Julian Oscillation on the intraseasonal forecast skill of the North Atlantic Oscillation. Geophys. Res. Lett., 37, L19803, doi:10.1029/2010GL044315.

    • Search Google Scholar
    • Export Citation
  • McGinn, D., and Coauthors, 2013: Wind power. Renewables 2013: Global Status Report. REN21 Tech. Rep., 49–52. [Available online at www.ren21.net/Portals/0/documents/Resources/GSR/2013/GSR2013_lowres.pdf.]

  • Pinson, P., 2013: Wind energy: Forecasting challenges for its operational management. Stat. Sci.,28, 564–585, doi:10.1214/13-STS445.

  • Pinson, P., and R. Hagedorn, 2012: Verification of the ECMWF ensemble forecasts of wind speed against analyses and observations. Meteor. Appl., 19, 484500, doi:10.1002/met.283.

    • Search Google Scholar
    • Export Citation
  • Richardson, D. S., 2000: Skill and relative economic value of the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 126, 649667, doi:10.1002/qj.49712656313.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and F. J. Doblas-Reyes, 2006: Medium-range, monthly, and seasonal prediction for Europe and the use of forecast information. J. Climate,19, 6025–6046, doi:10.1175/JCLI3944.1.

  • Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6, 98102, doi:10.1038/ngeo1698.

    • Search Google Scholar
    • Export Citation
  • Sinden, G., 2007: Characteristics of the UK wind resource: Long-term patterns and relationship to electricity demand. Energy Policy, 35, 112127, doi:10.1016/j.enpol.2005.10.003.

    • Search Google Scholar
    • Export Citation
  • Turner, G., S. Roots, M. Wiltshire, J. Trueb, S. Brown, G. Benz, and M. Hegelbach, 2013: Profiling the risks in solar and wind: A case for new risk management approaches in the renewable energy sector. Tech. Rep., Swiss Re, 18 pp. [Available online at https://www.bnef.com/InsightDownload/8090/pdf/.]

  • Vitart, F., 2004: Monthly forecasting at ECMWF. Mon. Wea. Rev., 132, 27612779, doi:10.1175/MWR2826.1.

  • Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill scores. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2256, in press.

  • Vitart, F., and T. Jung, 2010: Impact of the Northern Hemisphere extratropics on the skill in predicting the Madden Julian Oscillation. Geophys. Res. Lett., 37, L23805, doi:10.1029/2010GL045465.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and F. Molteni, 2010: Simulation of the Madden–Julian Oscillation and its teleconnections in the ECMWF forecast system. Quart. J. Roy. Meteor. Soc., 136, 842855, doi:10.1002/qj.623.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2008: The new VarEPS-monthly forecasting system: A first step towards seamless prediction. Quart. J. Roy. Meteor. Soc., 134, 17891799, doi:10.1002/qj.322.

    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., D. Baggenstos, M. A. Liniger, F. Vitart, and C. Appenzeller, 2008: Probabilistic verification of monthly temperature forecasts. Mon. Wea. Rev., 136, 51625182, doi:10.1175/2008MWR2551.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 680 198 7
PDF Downloads 539 149 5