Extending Extended Logistic Regression: Extended versus Separate versus Ordered versus Censored

Jakob W. Messner Institute of Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria

Search for other papers by Jakob W. Messner in
Current site
Google Scholar
PubMed
Close
,
Georg J. Mayr Institute of Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria

Search for other papers by Georg J. Mayr in
Current site
Google Scholar
PubMed
Close
,
Daniel S. Wilks Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by Daniel S. Wilks in
Current site
Google Scholar
PubMed
Close
, and
Achim Zeileis Department of Statistics, Faculty of Economics and Statistics, University of Innsbruck, Innsbruck, Austria

Search for other papers by Achim Zeileis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extended logistic regression is a recent ensemble calibration method that extends logistic regression to provide full continuous probability distribution forecasts. It assumes conditional logistic distributions for the (transformed) predictand and fits these using selected predictand category probabilities. In this study extended logistic regression is compared to the closely related ordered and censored logistic regression models. Ordered logistic regression avoids the logistic distribution assumption but does not yield full probability distribution forecasts, whereas censored regression directly fits the full conditional predictive distributions. The performance of these and other ensemble postprocessing methods is tested on wind speed and precipitation data from several European locations and ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF). Ordered logistic regression performed similarly to extended logistic regression for probability forecasts of discrete categories whereas full predictive distributions were better predicted by censored regression.

Denotes Open Access content.

Corresponding author address: Jakob W. Messner, Institute of Meteorology and Geophysics, University of Innsbruck, Innrain 52f, 6020 Innsbruck, Austria. E-mail: jakob.messner@uibk.ac.at

Abstract

Extended logistic regression is a recent ensemble calibration method that extends logistic regression to provide full continuous probability distribution forecasts. It assumes conditional logistic distributions for the (transformed) predictand and fits these using selected predictand category probabilities. In this study extended logistic regression is compared to the closely related ordered and censored logistic regression models. Ordered logistic regression avoids the logistic distribution assumption but does not yield full probability distribution forecasts, whereas censored regression directly fits the full conditional predictive distributions. The performance of these and other ensemble postprocessing methods is tested on wind speed and precipitation data from several European locations and ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF). Ordered logistic regression performed similarly to extended logistic regression for probability forecasts of discrete categories whereas full predictive distributions were better predicted by censored regression.

Denotes Open Access content.

Corresponding author address: Jakob W. Messner, Institute of Meteorology and Geophysics, University of Innsbruck, Innrain 52f, 6020 Innsbruck, Austria. E-mail: jakob.messner@uibk.ac.at
Save
  • Agresti, A., 2002: Categorical Data Analysis.2nd ed. John Wiley & Sons, 734 pp.

  • Ben Bouallègue, Z., 2013: Calibrated short-range ensemble precipitation forecasts using extended logistic regression with interaction terms. Wea. Forecasting, 28, 515–524, doi:10.1175/WAF-D-12-00062.1.

    • Search Google Scholar
    • Export Citation
  • Bröcker, J., and L. A. Smith, 2007: Increasing the reliability of reliability diagrams. Wea. Forecasting, 22, 651–661, doi:10.1175/WAF993.1.

    • Search Google Scholar
    • Export Citation
  • Christensen, R. H. B., 2013: ordinal: Regression Models for Ordinal Data, version 2013.09-30. R package. [Available online at http://CRAN.R-project.org/package=ordinal.]

  • Epstein, E. S., 1969: A scoring system for probability forecasts of ranked categories. J. Appl. Meteor., 8, 985–987, doi:10.1175/1520-0450(1969)008<0985:ASSFPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 1098–1118, doi:10.1175/MWR2904.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2012: Verification of TIGGE multimodel and ECMWF reforecast-calibrated probabilistic precipitation forecasts over the contiguous United States. Mon. Wea. Rev., 140, 2232–2252, doi:10.1175/MWR-D-11-00220.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., C. Snyder, and J. S. Whitaker, 2003: Ensemble forecasts and the properties of flow-dependent analysis-error covariance singular vectors. Mon. Wea. Rev., 131, 1741–1758, doi:10.1175//2559.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and X. Wei, 2004: Ensemble reforecasting: Improving medium-range forecast skill using retrospective forecasts. Mon. Wea. Rev., 132, 1434–1447, doi:10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559–570, doi:10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matheson, J. E., and R. L. Winkler, 1976: Scoring rules for continuous probability distributions. Manage. Sci., 22, 1087–1096, doi:10.1287/mnsc.22.10.1087.

    • Search Google Scholar
    • Export Citation
  • Messner, J. W., and A. Zeileis, 2013: crch: Censored Regression with Conditional Heteroscedasticity, version 0.1-0. R package. [Available online at http://CRAN.R-project.org/package=crch.]

  • Messner, J. W., A. Zeileis, G. J. Mayr, and D. S. Wilks, 2014: Heteroscedastic extended logistic regression for postprocessing of ensemble guidance. Mon. Wea. Rev., 142, 448–456, doi:10.1175/MWR-D-13-00271.1.

    • Search Google Scholar
    • Export Citation
  • Nelder, J. A., and R. W. M. Wedderburn, 1972: Generalized linear models. J. Roy. Stat. Soc., 135A, 370–384, doi:10.2307/2344614.

  • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 1155–1174, doi:10.1175/MWR2906.1.

    • Search Google Scholar
    • Export Citation
  • R Core Team, 2013: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. [Available online at http://www.R-project.org/.]

  • Roulin, E., and S. Vannitsem, 2012: Postprocessing of ensemble precipitation predictions with extended logistic regression based on hindcasts. Mon. Wea. Rev., 140, 874–888, doi:10.1175/MWR-D-11-00062.1.

    • Search Google Scholar
    • Export Citation
  • Roulston, M. S., and L. A. Smith, 2003: Combining dynamical and statistical ensembles. Tellus, 55A, 16–30, doi:10.1034/j.1600-0870.2003.201378.x.

    • Search Google Scholar
    • Export Citation
  • Ruiz, J. J., and C. Saulo, 2012: How sensitive are probabilistic precipitation forecasts to the choice of calibration algorithms and the ensemble generation method? Part I: Sensitivity to calibration methods. Meteor. Appl., 19, 302–313, doi:10.1002/met.286.

    • Search Google Scholar
    • Export Citation
  • Schefzik, R., T. L. Thorarinsdottir, and T. Gneiting, 2013: Uncertainty quantification in complex simulation models using ensemble copula coupling. Stat. Sci., 28, 616–640, doi:10.1214/13-STS443.

    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., 2014: Probabilistic quantitative precipitation forecasting using ensemble model output statistics. Quart. J. Roy. Meteor. Soc., 140, 1086–1096, doi:10.1002/qj.2183.

    • Search Google Scholar
    • Export Citation
  • Schmeits, M. J., and K. J. Kok, 2010: A comparison between raw ensemble output, (modified) Bayesian model averaging, and extended logistic regression using ECMWF ensemble precipitation reforecasts. Mon. Wea. Rev., 138, 4199–4211, doi:10.1175/2010MWR3285.1.

    • Search Google Scholar
    • Export Citation
  • Thorarinsdottir, T. L., and T. Gneiting, 2010: Probabilistic forecasts of wind speed: Ensemble model output statistics by using heteroscedastic censored regression. J. Roy. Stat. Soc., 173A, 371–388, doi:10.1111/j.1467-985X.2009.00616.x.

    • Search Google Scholar
    • Export Citation
  • Tobin, J., 1958: Estimation of relationships for limited dependent variables. Econometrica, 26, 24–36, doi:10.2307/1907382.

  • Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 1140–1158, doi:10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Comparison of ensemble-MOS methods in the Lorenz ’96 setting. Meteor. Appl., 13, 243–256, doi:10.1017/S1350482706002192.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2009: Extending logistic regression to provide full-probability-distribution MOS forecasts. Meteor. Appl., 16, 361–368, doi:10.1002/met.134.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Academic Press, 676 pp.

  • Wilks, D. S., and T. M. Hamill, 2007: Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Wea. Rev., 135, 2379–2390, doi:10.1175/MWR3402.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3805 2491 78
PDF Downloads 1246 212 12