Objectively Determined Fair-Weather NBL Features in ARW-WRF and Their Comparison to CASES-97 Observations

Margaret A. LeMone National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Margaret A. LeMone in
Current site
Google Scholar
PubMed
Close
,
Mukul Tewari National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Mukul Tewari in
Current site
Google Scholar
PubMed
Close
,
Fei Chen National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Fei Chen in
Current site
Google Scholar
PubMed
Close
, and
Jimy Dudhia National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Jimy Dudhia in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Heights of nocturnal boundary layer (NBL) features are determined using vertical profiles from the Advanced Research Weather Research and Forecasting Model (ARW-WRF), and then compared to data for three moderately windy fair-weather nights during the April–May 1997 Kansas-based Cooperative Atmosphere–Surface Exchange Study (CASES-97) to evaluate the success of four PBL schemes in replicating observations. The schemes are Bougeault–LaCarrere (BouLac), Mellor–Yamada–Janjić (MYJ), quasi-normal scale elimination (QNSE), and Yonsei University (YSU) versions 3.2 and 3.4.1. This study’s chosen objectively determined model NBL height h estimate uses a turbulence kinetic energy (TKE) threshold equal to 5% , where TKE′ is relative to its background (free atmosphere) value. The YSU- and MYJ-determined h could not be improved upon. Observed heights of the virtual temperature maximum hTvmax and wind speed maximum hSmax, and the heights h1wsonde and h2wsonde, between which the radiosonde slows from ~5 to ~3 m s−1 as it rises from turbulent to nonturbulent air, and thus brackets h, were used for comparison to model results. The observations revealed a general pattern: hTvmax increased through the night, and hTvmax and hSmax converged with time, and the two mostly lay between h1wsonde and h2wsonde after several hours. Clear failure to adhere to this pattern and large excursions from observations or other PBL schemes revealed excess mixing for BouLac and YSU version 3.2 (but not version 3.4.1) and excess thermal mixing for QNSE under windy conditions. Observed friction velocity was much smaller than model values, with differences consistent with the observations reflecting local skin drag and the model reflecting regional form drag + skin drag.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Margaret A. LeMone, National Center for Atmospheric Research, 3090 Center Green Dr., Boulder, CO 80301. E-mail: lemone@ucar.edu

Abstract

Heights of nocturnal boundary layer (NBL) features are determined using vertical profiles from the Advanced Research Weather Research and Forecasting Model (ARW-WRF), and then compared to data for three moderately windy fair-weather nights during the April–May 1997 Kansas-based Cooperative Atmosphere–Surface Exchange Study (CASES-97) to evaluate the success of four PBL schemes in replicating observations. The schemes are Bougeault–LaCarrere (BouLac), Mellor–Yamada–Janjić (MYJ), quasi-normal scale elimination (QNSE), and Yonsei University (YSU) versions 3.2 and 3.4.1. This study’s chosen objectively determined model NBL height h estimate uses a turbulence kinetic energy (TKE) threshold equal to 5% , where TKE′ is relative to its background (free atmosphere) value. The YSU- and MYJ-determined h could not be improved upon. Observed heights of the virtual temperature maximum hTvmax and wind speed maximum hSmax, and the heights h1wsonde and h2wsonde, between which the radiosonde slows from ~5 to ~3 m s−1 as it rises from turbulent to nonturbulent air, and thus brackets h, were used for comparison to model results. The observations revealed a general pattern: hTvmax increased through the night, and hTvmax and hSmax converged with time, and the two mostly lay between h1wsonde and h2wsonde after several hours. Clear failure to adhere to this pattern and large excursions from observations or other PBL schemes revealed excess mixing for BouLac and YSU version 3.2 (but not version 3.4.1) and excess thermal mixing for QNSE under windy conditions. Observed friction velocity was much smaller than model values, with differences consistent with the observations reflecting local skin drag and the model reflecting regional form drag + skin drag.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Margaret A. LeMone, National Center for Atmospheric Research, 3090 Center Green Dr., Boulder, CO 80301. E-mail: lemone@ucar.edu
Save
  • Acevedo, O. C., and D. R. Fitzjarrald, 2001: The early evening surface-layer transition: Temporal and special variability. J. Atmos. Sci., 58, 26502667, doi:10.1175/1520-0469(2001)058<2650:TEESLT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and R. K. Newsom, 2003: Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J. Atmos. Sci., 60, 25492555, doi:10.1175/1520-0469(2003)060<2549:RBLJPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., L. Mahrt, D. Vickers, J. Sun, B. B. Balsley, Y. L. Pichugina, and E. J. Williams, 2007: The very stable boundary layer on nights with weak low-level jets. J. Atmos. Sci., 64, 30683089, doi:10.1175/JAS4002.1.

    • Search Google Scholar
    • Export Citation
  • Basu, S., and F. Porte-Agel, 2006: Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: A scale-dependent dynamic modeling approach. J. Atmos. Sci., 63, 20742091, doi:10.1175/JAS3734.1.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 247272, doi:10.1007/s10546-004-2820-6.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., S. Hong, and H.-L. Pan, 1996: Comparison of NCEP–NCAR reanalysis with 1987 FIFE data. Mon. Wea. Rev., 124, 14801498, doi:10.1175/1520-0493(1996)124<1480:CONNRW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. LaCarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, doi:10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Caughey, S. J., J. C. Wyngaard, and J. C. Kaimal, 1979: Turbulence in the evolving stable boundary layer. J. Atmos. Sci., 36, 10411052.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001a: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001b: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129, 587604, doi:10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Detering, H. W., and D. Etling, 1985: Application of the E-ε turbulence model to the atmospheric boundary layer. Bound.-Layer Meteor., 33, 113133, doi:10.1007/BF00123386.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grummann, V. Koren, G. Gayno, and J. D. Tarplay, 2003: Implementation of the Noah land surface model advances in the National Centers for Environmental Predication operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fiebrich, C. A., and K. C. Crawford, 2001: The impact of unique meteorological phenomena detected by the Oklahoma Mesonet and ARS Micronet on automated quality control. Bull. Amer. Meteor. Soc., 82, 21732187, doi:10.1175/1520-0477(2001)082<2173:TIOUMP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gallice, Q., F. G. Wienhold, C. R. Hoyle, F. Immler, and T. Peter, 2011: Modeling the ascent of sounding balloons: Derivation of the vertical air motion. Atmos. Meas. Tech., 4, 22352253, doi:10.5194/amt-4-2235-2011.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, 2007: On the turbulent Prandtl number in the stable boundary layer. Bound.-Layer Meteor., 125, 329341, doi:10.1007/s10546-007-9192-7.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and W. M. Angevine, 2013: Ensemble data assimilation to characterize surface-layer errors in numerical weather prediction models. Mon. Wea. Rev., 141, 18041821, doi:10.1175/MWR-D-12-00280.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 2001: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso Model. NOAA/NWS/NCEP Office Note 437, 61 pp.

  • Johansson, C., and H. Bergstrom, 2005: An auxiliary tool to determine the height of the boundary layer. Bound.-Layer Meteor.,115, 423–432, doi:10.1007/s10546-004-1424-5.

  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 289 pp.

    • Search Google Scholar
    • Export Citation
  • Kosovic, B., and J. A. Curry, 2000: A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci., 57, 10521068, doi:10.1175/1520-0469(2000)057<1052:ALESSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., J. H. Prueger, J. I. MacPherson, M. Wolde, and F. Li, 2005: Effects of land use and meteorological conditions on Midwestern cropping systems. J. Hydrometeor., 6, 825839, doi:10.1175/JHM460.1.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and Coauthors, 2000: Land–atmosphere interaction research, early results, and opportunities in the Walnut River Watershed in southeast Kansas: CASES and ABLE. Bull. Amer. Meteor. Soc., 81, 757779, doi:10.1175/1520-0477(2000)081<0757:LIRERA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., K. Ikeda, R. L. Grossman, and M. W. Rotach, 2003: Horizontal variability of 2-m temperature at night during CASES-97. J. Atmos. Sci., 60, 24312449, doi:10.1175/1520-0469(2003)060<2431:HVOMTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., M. Tewari, F. Chen, and J. Dudhia, 2013: Objectively determined fair-weather CBL depths in the ARW-WRF model and their comparison to CASES-97 observations. Mon. Wea. Rev., 141, 3054, doi:10.1175/MWR-D-12-00106.1.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., X. S. Li, C. J. Zhu, and B. B. Stankov, 1988: The stably stratified boundary layer over the Great Plains. Bound.-Layer Meteor., 42, 95121, doi:10.1007/BF00119877.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202, doi:10.1007/BF00117978.

    • Search Google Scholar
    • Export Citation
  • MacCready, P. B., 1965: Comparison of some balloon techniques. J. Appl. Meteor., 4, 504508, doi:10.1175/1520-0450(1965)004<0504:COSBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and D. Vickers, 2006: Extremely weak mixing in stable conditions. Bound.-Layer Meteor., 119, 1939, doi:10.1007/s10546-005-9017-5.

    • Search Google Scholar
    • Export Citation
  • Melgarejo, J. W., and J. W. Deardorff, 1974: Stability functions for the boundary-layer resistance laws based upon observed boundary-layer heights. J. Atmos. Sci., 31, 13241333, doi:10.1175/1520-0469(1974)031<1324:SFFTBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806, doi:10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Monti, P., H. J. S. Fernando, M. Princevac, W. C. Chan, T. A. Kowalewski, and E. R. Pardyjak, 2002: Observations of flow and turbulence in the nocturnal boundary layer over a slope. J. Atmos. Sci., 59, 25132534, doi:10.1175/1520-0469(2002)059<2513:OOFATI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. Chen, S. Hone, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large-eddy simulation data. Bound.-Layer Meteor., 107, 401427, doi:10.1023/A:1022146015946.

    • Search Google Scholar
    • Export Citation
  • Pichugina, Y. L., and R. M. Banta, 2010: Stable boundary layer depth from high-resolution measurements of the mean wind profile. J. Appl. Meteor. Climate,49, 20–35, doi:10.1175/2009JAMC2168.1.

  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555581, doi:10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Richardson, H., S. Basu, and A. A. M. Holtslag, 2013: Improving stable boundary-layer height estimation using a stability-dependent critical bulk Richardson number. Bound.-Layer Meteor., 148, 93–109, doi:10.1007/s10546-013-9812-3.

    • Search Google Scholar
    • Export Citation
  • Shin, H. H., S.-Y. Hong, and Y. Noh, 2013: Derivation of turbulent kinetic energy from a first-order nonlocal planetary boundary layer parameterization. J. Atmos. Sci., 70, 17951805, doi:10.1175/JAS-D-12-0150.1.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., B. J. H. Van de Wiel, and A. A. M. Holtslag, 2007: Diagnostic equations for the stable boundary layer height: Evaluation and dimensional analysis. J. Appl. Meteor. Climatol., 46, 212225, doi:10.1175/JAM2454.1.

    • Search Google Scholar
    • Export Citation
  • Strang, E. J., and H. J. S. Fernando, 2001: Vertical mixing and transports through a stratified shear layer. J. Phys. Oceanogr., 31, 20262048, doi:10.1175/1520-0485(2001)031<2026:VMATTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Strassberg, D., M. LeMone, T. Warner, and J. Alfieri, 2008: Comparison of 10-m observed wind speeds to those based on Monin–Obukhov similarity theory using IHOP_2002 aircraft and surface data. Mon. Wea. Rev., 136, 964972, doi:10.1175/2007MWR2203.1.

    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., and B. Galperin, 2008: Anisotropic turbulence and internal waves in stable stratified flows (QNSE theory). Phys. Scr., 132, 014036, doi:10.1088/0031-8949/2008/T132/014036.

    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., B. Galperin, and V. Perov, 2005: Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over ice. Bound.-Layer Meteor., 117, 231257, doi:10.1007/s10546-004-6848-4.

    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., B. Galperin, and V. Perov, 2006: A quasi-normal scale elimination model of turbulence and its application to stably stratified flows. Nonlinear Processes Geophys., 13, 922, doi:10.5194/npg-13-9-2006.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2004: Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Bound.-Layer Meteor., 110, 255279, doi:10.1023/A:1026097926169.

    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Mahrt, R. M. Banta, and Y. L. Pichugina, 2012: Turbulence regimes and turbulent intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci., 69, 338351, doi:10.1175/JAS-D-11-082.1.

    • Search Google Scholar
    • Export Citation
  • Therry, G., and P. LaCarrere, 1983: Improving the eddy kinetic energy model for planetary boundary layer description. Bound.-Layer Meteor., 25, 6388, doi:10.1007/BF00122098.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., R. J. Ronda, A. F. Moene, H. A. R. De Bruin, and A. A. M. Holtslag, 2002: Intermittent turbulence and oscillations in the stable boundary layer over land. Part I: A bulk model. J. Atmos. Sci., 59, 942958, doi:10.1175/1520-0469(2002)059<0942:ITAOIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, O. K. Hartogenesis, H. A. R. De Bruin, and A. A. M. Holtslag, 2003: Intermittent turbulence in the stable boundary layer over land. Part III: A classification for observations during CASES-99. J. Atmos. Sci., 60, 25092522, doi:10.1175/1520-0469(2003)060<2509:ITITSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, H. J. J. Jonker, P. Baas, S. Basu, J. M. M. Donda, J. Sun, and A. A. M. Holtslag, 2012: The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J. Atmos. Sci., 69, 31163127, doi:10.1175/JAS-D-12-0107.1.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 2004: Evaluating formulations of stable boundary layer height. J. Appl. Meteor., 43, 1736–1749, doi:10.1175/JAM2160.1.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 2006: A solution for flux contamination by mesoscale motions with very weak turbulence. Bound.-Layer Meteor., 118, 431447, doi:10.1007/s10546-005-9003-y.

    • Search Google Scholar
    • Export Citation
  • Vogelezang, D. H. P., and A. A. M. Holtslag, 1996: Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteor., 81, 245269, doi:10.1007/BF02430331.

    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Bian, W. O. Brown, H. Cole, V. Grubisic, and K. Young, 2009: Vertical air motion from T-REX radiosonde and dropsonde data. J. Atmos. Oceanic Technol., 26, 928942, doi:10.1175/2008JTECHA1240.1.

    • Search Google Scholar
    • Export Citation
  • Yamada, T., 1979: Prediction of the nocturnal surface inversion height. J. Appl. Meteor., 18, 526531, doi:10.1175/1520-0450(1979)018<0526:POTNSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2434 1580 172
PDF Downloads 328 85 7