The Role of Vertical Shear on Aviation Turbulence within Cirrus Bands of a Simulated Western Pacific Cyclone

Jung-Hoon Kim NASA Ames Research Center/Oak Ridge Associated Universities, Moffett Field, California, and Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

Search for other papers by Jung-Hoon Kim in
Current site
Google Scholar
PubMed
Close
,
Hye-Yeong Chun Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

Search for other papers by Hye-Yeong Chun in
Current site
Google Scholar
PubMed
Close
,
Robert D. Sharman National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Robert D. Sharman in
Current site
Google Scholar
PubMed
Close
, and
Stanley B. Trier National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Stanley B. Trier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

At 0300 UTC 9 September 2010, commercial aircraft traveling between Tokyo and Hawaii encountered regions of moderate and severe intensity turbulence at about 12-km elevation in or just above banded structures in the cirrus anvil associated with an oceanic cyclone located off the east coast of Japan. The generation mechanisms of the cirrus bands and turbulence are investigated using the Advanced Research Weather Research and Forecasting Model with five nested domains having a finest horizontal grid spacing of 370 m. The simulation reproduces the satellite-observed patterns of cloud brightness, including the bands, and suggests that synoptic-scale vertical shear within the anvil cloud layer and radiative effects, including longwave cooling at cloud top and warming at cloud base, act together to produce banded structures within the southern edge of the cirrus cloud shield. The character of the bands within the nearly neutral or convectively unstable layer of the cirrus shield is similar to boundary layer rolls in that the vertical wind shear vectors are nearly parallel to the cirrus bands. The strong vertical shear aligned with the banded convection leads to flow deformations and mixing near the cloud top, resulting in localized moderate and severe turbulence. The estimated maximum value of the cube root of eddy dissipation rate within the bands is ~0.7 m2/3 s−1, consistent with severe turbulence levels experienced by large aircraft.

Corresponding author address: Dr. Jung-Hoon Kim, NASA Postdoctoral Program Fellow, Aviation Systems Division, NASA Ames Research Center, Mail Code 210-10, Moffett Field, CA 94035-1000. E-mail: jung-hoon.kim@nasa.gov

Abstract

At 0300 UTC 9 September 2010, commercial aircraft traveling between Tokyo and Hawaii encountered regions of moderate and severe intensity turbulence at about 12-km elevation in or just above banded structures in the cirrus anvil associated with an oceanic cyclone located off the east coast of Japan. The generation mechanisms of the cirrus bands and turbulence are investigated using the Advanced Research Weather Research and Forecasting Model with five nested domains having a finest horizontal grid spacing of 370 m. The simulation reproduces the satellite-observed patterns of cloud brightness, including the bands, and suggests that synoptic-scale vertical shear within the anvil cloud layer and radiative effects, including longwave cooling at cloud top and warming at cloud base, act together to produce banded structures within the southern edge of the cirrus cloud shield. The character of the bands within the nearly neutral or convectively unstable layer of the cirrus shield is similar to boundary layer rolls in that the vertical wind shear vectors are nearly parallel to the cirrus bands. The strong vertical shear aligned with the banded convection leads to flow deformations and mixing near the cloud top, resulting in localized moderate and severe turbulence. The estimated maximum value of the cube root of eddy dissipation rate within the bands is ~0.7 m2/3 s−1, consistent with severe turbulence levels experienced by large aircraft.

Corresponding author address: Dr. Jung-Hoon Kim, NASA Postdoctoral Program Fellow, Aviation Systems Division, NASA Ames Research Center, Mail Code 210-10, Moffett Field, CA 94035-1000. E-mail: jung-hoon.kim@nasa.gov
Save
  • Anderson, R. K., and Coauthors, 1973: The use of satellite pictures in weather analysis and forecasting. Tech. Note 124, WMO 333, World Meteorological Organization, Geneva, Switzerland, 275 pp.

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface/hydrology model with the Penn State–NCAR MM5 modeling system. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., D. E. Stevens, R. H. Johnson, and K. R. Dean, 1989: Observational evidence for asymmetric inertial instability. J. Atmos. Sci., 46, 817831, doi:10.1175/1520-0469(1989)046<0817:OEFAII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cornman, L. B., C. S. Morse, and G. Cunning, 1995: Real-time estimation of atmospheric turbulence severity from in-situ aircraft measurements. J. Aircr., 32, 171177, doi:10.2514/3.46697.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1982: On the effects of moisture on the Brunt–Väisälä frequency. J. Atmos. Sci., 39, 21522158, doi:10.1175/1520-0469(1982)039<2152:OTEOMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., 1985: Detection of high level turbulence using satellite imagery and upper-air data. NOAA Tech. Memo. NESDIS 10, 30 pp.

  • Ellrod, G. P., 1989: Decision tree approach to clear air turbulence analysis using satellite and upper air data. NOAA Tech. Memo. NESDIS 23, Satellite Applications Laboratory, Washington, DC, 20 pp.

  • Ellrod, G. P., 1990: Use of water vapor imagery to identify CAT. NOAA/NESDIS Applied Information Note 90/8, Washington, DC, 9 pp.

  • Etling, D., and R. A. Brown, 1993: Roll vorticies in the planetary boundary layer: A review. Bound.-Layer Meteor., 65, 215248, doi:10.1007/BF00705527.

    • Search Google Scholar
    • Export Citation
  • Galvin, J., 2009: Two cases of turbulence over western Europe. Weather, 64, 83, doi:10.1002/wea.353.

  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • International Civil Aviation Organization, 2010: Meteorological service for international air navigation. Annex 3 to the Convention on International Civil Aviation, 17th ed., 206 pp. [Available online at http://store1.icao.int/index.php/publications/annexes/3-meteorological-service-for-international-air-navigation.html.]

  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp.

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., and H.-Y. Chun, 2010: A numerical study of clear-air turbulence (CAT) encounters over South Korea on 2 April 2007. J. Appl. Meteor. Climatol., 49, 23812403, doi:10.1175/2010JAMC2449.1.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., and H.-Y. Chun, 2011: Statistics and possible sources of aviation turbulence over South Korea. J. Appl. Meteor. Climatol., 50, 311324, doi:10.1175/2010JAMC2492.1.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., and H.-Y. Chun, 2012: A numerical simulation of convectively induced turbulence above deep convection. J. Appl. Meteor. Climatol., 51, 11801200, doi:10.1175/JAMC-D-11-0140.1.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., H.-Y. Chun, R. D. Sharman, and T. L. Keller, 2011: Evaluations of upper-level turbulence diagnostics performance using the Graphical Turbulence Guidance (GTG) system and pilot reports (PIREPs) over East Asia. J. Appl. Meteor. Climatol.,50, 1936–1951, doi:10.1175/JAMC-D-10-05017.1; Corrigendum, 50, 2193, doi:10.1175/JAMC-D-11-0188.1.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., W. N. Chan, B. Sridhar, and R. D. Sharman, 2014: Development of Super Ensemble-based Aviation Turbulence Information and Guidance (SEATIG) and its application to the advanced Air Traffic Management (ATM). Fourth Special Symp. on Aviation, Range, and Aerospace Meteorology (ARAM), Atlanta, GA, Amer. Meteor. Soc., 4.3. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Manuscript/Paper236384/Kim_et_al_SEATG_fnl.pdf.]

  • Knox, J. A., 1997: Possible mechanism of clear-air turbulence in strongly anticyclonic flows. Mon. Wea. Rev., 125, 12511259, doi:10.1175/1520-0493(1997)125<1251:PMOCAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knox, J. A., A. S. Bachmeier, W. M. Carter, J. E. Tarantino, L. C. Paulik, E. N. Wilson, G. S. Bechdol, and M. J. Mays, 2010: Transverse cirrus bands in weather systems: A grand tour of an enduring enigma. Weather, 65, 3541, doi:10.1002/wea.417.

    • Search Google Scholar
    • Export Citation
  • Kuettner, J. P., 1971: Cloud bands in the earth’s atmosphere: Observations and theory. Tellus, 23, 404425, doi:10.1111/j.2153-3490.1971.tb00585.x.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, T. L. Clark, and H.-M. Hsu, 2003: An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60, 12971321, doi:10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, S. B. Trier, R. G. Fovell, and J. K. Williams, 2012: Recent advances in the understanding of near-cloud turbulence. Bull. Amer. Meteor. Soc., 93, 499515, doi:10.1175/BAMS-D-11-00062.1.

    • Search Google Scholar
    • Export Citation
  • Lenz, A., K. M. Bedka, W. F. Feltz, and S. A. Ackerman, 2009: Convectively induced transverse band signatures in satellite imagery. Wea. Forecasting, 24, 13621373, doi:10.1175/2009WAF2222285.1.

    • Search Google Scholar
    • Export Citation
  • Lester, P. F., 1994: Turbulence: A New Perspective for Pilots. Jeppesen Sanderson, 212 pp.

  • Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, doi:10.1175/2009MWR2968.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Miura, Y., 1986: Aspect ratios of longitudinal rolls and convection cells observed during cold air outbreaks. J. Atmos. Sci., 43, 2639, doi:10.1175/1520-0469(1986)043<0026:AROLRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, 1992: Numerical Recipes: The Art of Scientific Computing. 2nd ed. Cambridge University Press, 963 pp.

  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107, doi:10.1002/qj.49712454804.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and J. A. Knox, 2007: Banded convection caused by frontogenesis in a conditionally, symmetrically, and inertially unstable environment. Mon. Wea. Rev., 135, 20952110, doi:10.1175/MWR3400.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., D. M. Schultz, and J. A. Knox, 2010: Convective snowbands downstream of the Rocky Mountains in and environment with conditional, dry symmetric, and inertial instabilities. Mon. Wea. Rev., 138, 44164438, doi:10.1175/2010MWR3334.1.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., 1991: Subgrid length-scales for large-eddy simulation of stratified turbulence. Theor. Comput. Fluid Dyn., 2, 279290, doi:10.1007/BF00271468.

    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., C. Tebaldi, G. Wiener, and J. Wolff, 2006: An integrated approach to mid- and upper-level turbulence forecasting. Wea. Forecasting, 21, 268287, doi:10.1175/WAF924.1.

    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., J. D. Doyle, and M. A. Shapiro, 2012a: An investigation of a commercial aircraft encounter with severe clear-air turbulence over western Greenland. J. Appl. Meteor. Climatol., 51, 4253, doi:10.1175/JAMC-D-11-044.1.

    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., S. B. Trier, T. P. Lane, and J. D. Doyle, 2012b: Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review. Geophys. Res. Lett., 39, L12803, doi:10.1029/2012GL051996.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Smith, T. L., S. G. Benjamin, J. M. Brown, S. S. Weygandt, T. Smirnova, and B. E. Schwartz, 2008: Convection forecasts from the hourly updated, 3-km High Resolution Rapid Refresh (HRRR) model. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 11.1. [Available online at https://ams.confex.com/ams/pdfpapers/142055.pdf‎.]

  • Trier, S. B., and R. D. Sharman, 2009: Convection-permitting simulations of the environment supporting widespread turbulence within the upper-level outflow of a mesoscale convective system. Mon. Wea. Rev., 137, 19721990, doi:10.1175/2008MWR2770.1.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., R. D. Sharman, R. G. Fovell, and R. G. Frehlich, 2010: Numerical simulation of radial cloud bands within the upper-level outflow of an observed mesoscale convective system. J. Atmos. Sci., 67, 29902999, doi:10.1175/2010JAS3531.1.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., R. D. Sharman, and T. P. Lane, 2012: Influences of moist convection on a cold-season outbreak of clear-air turbulence (CAT). Mon. Wea. Rev., 140, 24772496, doi:10.1175/MWR-D-11-00353.1.

    • Search Google Scholar
    • Export Citation
  • Tvaryanas, A. P., 2003: Epidemiology of turbulence-related injuries in airline cabin crew, 1992–2001. Aviat. Space Environ. Med., 74, 970976.

    • Search Google Scholar
    • Export Citation
  • Whitney, L. F., Jr., A. Timchalk, and T. I. Gray Jr., 1966: On locating jet streams from TIROS photographs. Mon. Wea. Rev., 94, 127138, doi:10.1175/1520-0493(1966)094<0127:OLJSFT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 639 187 30
PDF Downloads 561 174 28