Can Polar Lows be Objectively Identified and Tracked in the ECMWF Operational Analysis and the ERA-Interim Reanalysis?

Giuseppe Zappa National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Giuseppe Zappa in
Current site
Google Scholar
PubMed
Close
,
Len Shaffrey National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Len Shaffrey in
Current site
Google Scholar
PubMed
Close
, and
Kevin Hodges National Centre for Earth Observation, University of Reading, Reading, United Kingdom

Search for other papers by Kevin Hodges in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Polar lows are maritime mesocyclones associated with intense surface wind speeds and oceanic heat fluxes at high latitudes. The ability of the Interim ECMWF Re-Analysis (ERA-Interim, hereafter ERAI) to represent polar lows in the North Atlantic is assessed by comparing ERAI and the ECMWF operational analysis for the period 2008–11. First, the representation of a set of satellite-observed polar lows over the Norwegian and Barents Seas in the operational analysis and ERAI is analyzed. Then, the possibility of directly identifying and tracking the polar lows in the operational analysis and ERAI is explored using a tracking algorithm based on 850-hPa vorticity with objective identification criteria on cyclone dynamical intensity and atmospheric static stability. All but one of the satellite-observed polar lows with a lifetime of at least 6 h have an 850-hPa vorticity signature of a collocated mesocyclone in both the operational analysis and ERAI for most of their life cycles. However, the operational analysis has vorticity structures that better resemble the observed cloud patterns and stronger surface wind speed intensities compared to those in ERAI. By applying the objective identification criteria, about 55% of the satellite-observed polar lows are identified and tracked in ERAI, while this fraction increases to about 70% in the operational analysis. Particularly in ERAI, the remaining observed polar lows are mainly not identified because they have too weak wind speed and vorticity intensity compared to the tested criteria. The implication of the tendency of ERAI to underestimate the polar low dynamical intensity for future studies of polar lows is discussed.

Denotes Open Access content.

Corresponding author address: Giuseppe Zappa, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading, RG6 6BP, United Kingdom. E-mail: g.zappa@reading.ac.uk

Abstract

Polar lows are maritime mesocyclones associated with intense surface wind speeds and oceanic heat fluxes at high latitudes. The ability of the Interim ECMWF Re-Analysis (ERA-Interim, hereafter ERAI) to represent polar lows in the North Atlantic is assessed by comparing ERAI and the ECMWF operational analysis for the period 2008–11. First, the representation of a set of satellite-observed polar lows over the Norwegian and Barents Seas in the operational analysis and ERAI is analyzed. Then, the possibility of directly identifying and tracking the polar lows in the operational analysis and ERAI is explored using a tracking algorithm based on 850-hPa vorticity with objective identification criteria on cyclone dynamical intensity and atmospheric static stability. All but one of the satellite-observed polar lows with a lifetime of at least 6 h have an 850-hPa vorticity signature of a collocated mesocyclone in both the operational analysis and ERAI for most of their life cycles. However, the operational analysis has vorticity structures that better resemble the observed cloud patterns and stronger surface wind speed intensities compared to those in ERAI. By applying the objective identification criteria, about 55% of the satellite-observed polar lows are identified and tracked in ERAI, while this fraction increases to about 70% in the operational analysis. Particularly in ERAI, the remaining observed polar lows are mainly not identified because they have too weak wind speed and vorticity intensity compared to the tested criteria. The implication of the tendency of ERAI to underestimate the polar low dynamical intensity for future studies of polar lows is discussed.

Denotes Open Access content.

Corresponding author address: Giuseppe Zappa, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading, RG6 6BP, United Kingdom. E-mail: g.zappa@reading.ac.uk
Save
  • Aspelien, T., T. Iversen, J. B. Bremnes, and I.-L. Frogner, 2011: Short-range probabilistic forecasts from the Norwegian limited-area EPS: Long-term validation and a polar low study. Tellus, 63A, 564584, doi:10.1111/j.1600-0870.2010.00502.x.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and M. Esch, 2007: Tropical cyclones in a T159 resolution global climate model: Comparison with observations and re-analyses. Tellus, 59A, 396416, doi:10.1111/j.1600-0870.2007.00236.x.

    • Search Google Scholar
    • Export Citation
  • Blechschmidt, A.-M., 2008: A 2-year climatology of polar low events over the Nordic Seas from satellite remote sensing. Geophys. Res. Lett.,35, L09815, doi:10.1029/2008GL033706.

  • Blechschmidt, A.-M., S. Bakan, and H. Graßl, 2009: Large-scale atmospheric circulation patterns during polar low events over the Nordic seas. J. Geophys. Res., 114, D06115, doi:10.1029/2008JD010865.

    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., and Coauthors, 2013: High-latitude ocean and sea ice surface fluxes: Challenges for climate research. Bull. Amer. Meteor. Soc., 94, 403423, doi:10.1175/BAMS-D-11-00244.1.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and S. L. Gray, 2008: An objective climatology of the dynamical forcing of polar lows in the Nordic seas. Int. J. Climatol., 28, 19031919, doi:10.1002/joc.1686.

    • Search Google Scholar
    • Export Citation
  • Businger, S., 1985: The synoptic climatology of polar low outbreaks. Tellus, 37A, 419432, doi:10.1111/j.1600-0870.1985.tb00441.x.

  • Condron, A., and I. A. Renfrew, 2013: The impact of polar mesoscale storms on northeast Atlantic Ocean circulation. Nat. Geosci., 6, 3437, doi:10.1038/ngeo1661.

    • Search Google Scholar
    • Export Citation
  • Condron, A., G. R. Bigg, and I. A. Renfrew, 2006: Polar mesoscale cyclones in the Northeast Atlantic: Comparing climatologies from ERA-40 and satellite imagery. Mon. Wea. Rev., 134, 15181533, doi:10.1175/MWR3136.1.

    • Search Google Scholar
    • Export Citation
  • Condron, A., G. R. Bigg, and I. A. Renfrew, 2008: Modeling the impact of polar mesocyclones on ocean circulation. J. Geophys. Res., 113, C10005, doi:10.1029/2007JC004599.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., J. N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 13671387, doi:10.1002/qj.49712051912.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Harold, J. M., G. R. Bigg, and J. Turner, 1999: Mesocyclone activity over the Northeast Atlantic. Part 1: Vortex distribution and variability. Int. J. Climatol., 19, 11871204, doi:10.1002/(SICI)1097-0088(199909)19:11<1187::AID-JOC419>3.0.CO;2-Q.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123, 34583465, doi:10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1999: Adaptive constraints for feature tracking. Mon. Wea. Rev., 127, 13621373, doi:10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., and K. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061, doi:10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kinter, J. L., III, and Coauthors, 2013: Revolutionizing climate modeling with Project Athena: A multi-institutional, international collaboration. Bull. Amer. Meteor. Soc., 94, 231245, doi:10.1175/BAMS-D-11-00043.1.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., 2011: A global climatology of favourable conditions for polar lows. Quart. J. Roy. Meteor. Soc., 137, 17491761, doi:10.1002/qj.888.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., and T. J. Bracegirdle, 2008: Marine cold-air outbreaks in the future: An assessment of IPCC AR4 model results for the Northern Hemisphere. Climate Dyn., 30, 871885, doi:10.1007/s00382-007-0331-0.

    • Search Google Scholar
    • Export Citation
  • Laffineur, T., C. Claud, J.-P. Chaboureau, and G. Noer, 2014: Polar lows over the Nordic Seas: Improved representation in ERA-Interim compared to ERA-40 and the impact on downscaled simulations. Mon. Wea. Rev., 142, 22712289, doi:10.1175/MWR-D-13-00171.1.

    • Search Google Scholar
    • Export Citation
  • Mallet, P. E., C. Claud, C. Cassou, G. Noer, and K. Kodera, 2013: Polar lows over the Nordic and Labrador Seas: Synoptic circulation patterns and associations with North Atlantic–Europe wintertime weather regimes. J. Geophys. Res. Atmos., 118, 24552472, doi:10.1002/jgrd.50246.

    • Search Google Scholar
    • Export Citation
  • McInnes, H., J. Kristiansen, J. E. Kristjánsson, and H. Schyberg, 2011: The role of horizontal resolution for polar low simulations. Quart. J. Roy. Meteor. Soc., 137, 16741687, doi:10.1002/qj.849.

    • Search Google Scholar
    • Export Citation
  • Noer, G., Ø. Saetra, T. Lien, and Y. Gusdal, 2011: A climatological study of polar lows in the Nordic Seas. Quart. J. Roy. Meteor. Soc., 137, 17621772, doi:10.1002/qj.846.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. A., and J. Turner, 2003: Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge University Press, 612 pp.

  • Shapiro, M. A., L. S. Fedor, and T. Hampel, 1987: Research aircraft measurements of a polar low over the Norwegian Sea. Tellus, 39A, 272306, doi:10.1111/j.1600-0870.1987.tb00309.x.

    • Search Google Scholar
    • Export Citation
  • Shkolnik, I. M., and S. V. Efimov, 2013: Cyclonic activity in high latitudes as simulated by a regional atmospheric climate model: Added value and uncertainties. Environ. Res. Lett.,8, 045007, doi:10.1088/1748-9326/8/4/045007.

  • Wilhelmsen, K., 1985: Climatological study of gale-producing polar lows near Norway. Tellus, 37A, 451459, doi:10.1111/j.1600-0870.1985.tb00443.x.

    • Search Google Scholar
    • Export Citation
  • Xia, L., M. Zahn, K. I. Hodges, F. Feser, and H. V. Storch, 2012: A comparison of two identification and tracking methods for polar lows. Tellus, 64A, 17196, doi:10.3402/tellusa.v64i0.17196.

    • Search Google Scholar
    • Export Citation
  • Yanase, W., H. Niino, and K. Saito, 2002: High-resolution numerical simulation of a polar low. Geophys. Res. Lett., 29, doi:10.1029/2002GL014736.

    • Search Google Scholar
    • Export Citation
  • Zahn, M., and H. von Storch, 2008a: A long-term climatology of North Atlantic polar lows. Geophys. Res. Lett.,35, L22702, doi:10.1029/2008GL035769.

  • Zahn, M., and H. von Storch, 2008b: Tracking polar lows in CLM. Meteor. Z., 17, 445453, doi:10.1127/0941-2948/2008/0317.

  • Zahn, M., and H. von Storch, 2010: Decreased frequency of North Atlantic polar lows associated with future climate warming. Nature, 467, 309312, doi:10.1038/nature09388.

    • Search Google Scholar
    • Export Citation
  • Zappa, G., L. C. Shaffrey, and K. I. Hodges, 2013a: The ability of CMIP5 models to simulate North Atlantic extratropical cyclones. J. Climate, 26, 53795396, doi:10.1175/JCLI-D-12-00501.1.

    • Search Google Scholar
    • Export Citation
  • Zappa, G., L. C. Shaffrey, K. I. Hodges, P. G. Sansom, and D. B. Stephenson, 2013b: A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models. J. Climate, 26, 58465862, doi:10.1175/JCLI-D-12-00573.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 668 211 10
PDF Downloads 522 152 15