Assimilation of Tropical Cyclone Observations: Improving the Assimilation of TCVitals, Scatterometer Winds, and Dropwindsonde Observations

Christina Holt Texas A&M University, College Station, Texas

Search for other papers by Christina Holt in
Current site
Google Scholar
PubMed
Close
,
Istvan Szunyogh Texas A&M University, College Station, Texas

Search for other papers by Istvan Szunyogh in
Current site
Google Scholar
PubMed
Close
,
Gyorgyi Gyarmati Texas A&M University, College Station, Texas

Search for other papers by Gyorgyi Gyarmati in
Current site
Google Scholar
PubMed
Close
,
S. Mark Leidner AER, Norman, Oklahoma

Search for other papers by S. Mark Leidner in
Current site
Google Scholar
PubMed
Close
, and
Ross N. Hoffman AER, Lexington, Massachusetts

Search for other papers by Ross N. Hoffman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The standard statistical model of data assimilation assumes that the background and observation errors are normally distributed, and the first- and second-order statistical moments of the two distributions are known or can be accurately estimated. Because these assumptions are never satisfied completely in practice, data assimilation schemes must be robust to errors in the underlying statistical model. This paper tests simple approaches to improving the robustness of data assimilation in tropical cyclone (TC) regions.

Analysis–forecast experiments are carried out with three types of data—Tropical Cyclone Vitals (TCVitals), DOTSTAR, and QuikSCAT—that are particularly relevant for TCs and with an ensemble-based data assimilation scheme that prepares a global analysis and a limited-area analysis in a TC basin simultaneously. The results of the experiments demonstrate that significant analysis and forecast improvements can be achieved for TCs that are category 1 and higher by improving the robustness of the data assimilation scheme.

Corresponding author address: Istvan Szunyogh, Texas A&M University, 1204 Eller O&M, 3150 TAMU, College Station, TX 77843. E-mail: szunyogh@tamu.edu

Abstract

The standard statistical model of data assimilation assumes that the background and observation errors are normally distributed, and the first- and second-order statistical moments of the two distributions are known or can be accurately estimated. Because these assumptions are never satisfied completely in practice, data assimilation schemes must be robust to errors in the underlying statistical model. This paper tests simple approaches to improving the robustness of data assimilation in tropical cyclone (TC) regions.

Analysis–forecast experiments are carried out with three types of data—Tropical Cyclone Vitals (TCVitals), DOTSTAR, and QuikSCAT—that are particularly relevant for TCs and with an ensemble-based data assimilation scheme that prepares a global analysis and a limited-area analysis in a TC basin simultaneously. The results of the experiments demonstrate that significant analysis and forecast improvements can be achieved for TCs that are category 1 and higher by improving the robustness of the data assimilation scheme.

Corresponding author address: Istvan Szunyogh, Texas A&M University, 1204 Eller O&M, 3150 TAMU, College Station, TX 77843. E-mail: szunyogh@tamu.edu
Save
  • Aberson, S. D., 2003: Targeted observations to improve operational tropical cyclone track forecast guidance. Mon. Wea. Rev., 131, 16131628, doi:10.1175//2550.1.

    • Search Google Scholar
    • Export Citation
  • Aberson, S. D., 2008: Large forecast degradations due to synoptic surveillance during the 2004 and 2005 hurricane seasons. Mon. Wea. Rev., 136, 31383150, doi:10.1175/2007MWR2192.1.

    • Search Google Scholar
    • Export Citation
  • Atangan, J. F., A. Preble, A. C. Bryant, and Y. Pitts, 2004: 2004 annual tropical cyclone report. U.S. Naval Pacific Meteorology and Oceanography Center/Joint Typhoon Warning Center Tech. Rep., Pearl Harbor, HI. [Available online at http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/atcr/2004atcr.pdf.]

  • Baek, S.-J., B. R. Hunt, E. Kalnay, E. Ott, and I. Szunyogh, 2006: Local ensemble Kalman filtering in the presence of model bias. Tellus, 58A, 293306, doi:10.1111/j.1600-0870.2006.00178.x.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and C. Snyder, 2007: Assimilating vortex position with an ensemble Kalman filter. Mon. Wea. Rev., 135, 18281845, doi:10.1175/MWR3351.1.

    • Search Google Scholar
    • Export Citation
  • Chou, K.-H., and C.-C. Wu, 2008: Typhoon initialization in a mesoscale model—Combination of the bogused vortex and the dropwindsonde data in DOTSTAR. Mon. Wea. Rev., 136, 865879, doi:10.1175/2007MWR2141.1.

    • Search Google Scholar
    • Export Citation
  • Chou, K.-H., C.-C. Wu, P.-H. Lin, S. D. Aberson, M. Weissmann, F. Harnisch, and T. Nakazawa, 2011: The impact of dropwindsonde observations on typhoon track forecasts in DOTSTAR and T-PARC. Mon. Wea. Rev., 139, 17281743, doi:10.1175/2010MWR3582.1.

    • Search Google Scholar
    • Export Citation
  • Cooper, G. A., R. J. Falvey, and M. Vancas, 2008: 2008 annual tropical cyclone report. U.S. Naval Pacific Meteorology and Oceanography Center/Joint Typhoon Warning Center Tech. Rep., Pearl Harbor, HI. [Available online at http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/atcr/2008atcr.pdf.]

  • Hamill, T. M., J. S. Whitaker, M. Fiorino, and S. G. Benjamin, 2011: Global ensemble predictions of 2009’s tropical cyclones initialized with an ensemble Kalman filter. Mon. Wea. Rev., 139, 668688, doi:10.1175/2010MWR3456.1.

    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., 2011: Neutral stability height corrections for winds. NASA Tech. Rep., 6 pp. [Available online at http://map.nasa.gov/data/ssw.old/reason_sample/doc/src/height-correct.pdf.]

  • Hoffman, R. N., and S. M. Leidner, 2005: An introduction to the near-real-time QuikSCAT data. Wea. Forecasting, 20, 476493, doi:10.1175/WAF841.1.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 12121218, doi:10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holt, C. R., I. Szunyogh, and G. Gyarmati, 2013: Can a moderate-resolution limited-area data assimilation system add value to the global analysis of tropical cyclones? Mon. Wea. Rev., 141, 18661883, doi:10.1175/MWR-D-12-00093.1.

    • Search Google Scholar
    • Export Citation
  • Huber, P. J., and E. M. Ronchetti, 2009: Robust Statistics. 2nd ed. J. Wiley and Sons, 380 pp.

  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, doi:10.1016/j.physd.2006.11.008.

    • Search Google Scholar
    • Export Citation
  • Isaksen, L., and P. A. E. M. Janssen, 2004: Impact of ERS scatterometer winds in ECMWF’s assimilation system. Quart. J. Roy. Meteor. Soc., 130, 17931814, doi:10.1256/qj.03.110.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., 2011: Assimilation of tropical cyclone advisory minimum sea level pressure in the NCEP Global Data Assimilation System. Wea. Forecasting, 26, 10851091, doi:10.1175/WAF-D-11-00045.1.

    • Search Google Scholar
    • Export Citation
  • Kunii, M., T. Miyoshi, and E. Kalnay, 2012: Estimating the impact of real observation in regional numerical weather prediction using an ensemble Kalman filter. Mon. Wea. Rev., 140, 19751987, doi:10.1175/MWR-D-11-00205.1.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Leidner, S. M., L. Isaksen, and R. N. Hoffman, 2003: Impact of NSCAT winds on tropical cyclones in the ECMWF 4DVAR assimilation system. Mon. Wea. Rev., 131, 326, doi:10.1175/1520-0493(2003)131<0003:IONWOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lungu, T., Ed., 2006: QuikSCAT science data product user’s manual: Overview and geophysical data products. 3rd ed. Jet Propulsion Laboratory, California Institute of Technology, 85 pp. [Available online at ftp://podaac.jpl.nasa.gov/allData/quikscat/L2B12/docs/QSUG_v3.pdf.]

  • Merkova, D., I. Szunyogh, and E. Ott, 2011: Strategies for coupling global and limited-area ensemble Kalman filter assimilation. Nonlinear Processes Geophys., 18, 415430, doi:10.5194/npg-18-415-2011.

    • Search Google Scholar
    • Export Citation
  • Ott, E., B. R. Hunt, I. Szunyogh, A. V. Zimin, and E. J. Kostelich, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415428, doi:10.1111/j.1600-0870.2004.00076.x.

    • Search Google Scholar
    • Export Citation
  • Parsons, D., I. Szunyogh, and P. Harr, 2008: Scientific program overview THORPEX Pacific-Asian Regional Campaign (TPARC). National Science Foundation Executive Summary, 18 pp. [Available online at http://somas.stonybrook.edu/~na-thorpex/tparc/SPO_PARC_revised.pdf.]

  • Pu, Z., X. Li, C. S. Velden, S. D. Aberson, and W. T. Liu, 2008: The impact of aircraft dropsondes and satellite wind data on numerical simulations of two landfalling tropical storms during the Tropical Cloud Systems and Processes Experiment. Wea. Forecasting, 23, 6279, doi:10.1175/2007WAF2007006.1.

    • Search Google Scholar
    • Export Citation
  • Roh, S., M. G. Genton, M. Jun, I. Szunyogh, and I. Hoteit, 2013: Observation quality control with a robust ensemble Kalman filter. Mon. Wea. Rev., 141, 44144428, doi:10.1175/MWR-D-13-00091.1.

    • Search Google Scholar
    • Export Citation
  • Ruf, C. S., S. Gleason, Z. Zelenak, S. Katzberg, A. Ridley, R. Rose, J. Scherrer, and V. Zavorotny, 2012: The GYGNSS nanosatellite constellation hurricane mission. Proc. Int. Geoscience and Remote Sensing Symp. (IGARSS), Munich, Germany, IEEE, doi:10.1109/IGARSS.2012.6351600.

  • Szunyogh, I., 2014: Applicable Atmospheric Dynamics: Techniques for the Exploration of Atmospheric Dynamics. World Scientific, 588 pp.

  • Szunyogh, I., E. J. Kostelich, G. Gyarmati, D. J. Patil, B. R. Hunt, E. Kalnay, E. Ott, and J. A. Yorke, 2005: Assessing a local ensemble Kalman filter: Perfect model experiments with the NCEP global model. Tellus, 57A, 528545, doi:10.1111/j.1600-0870.2005.00136.x.

    • Search Google Scholar
    • Export Citation
  • Szunyogh, I., E. J. Kostelich, G. Gyarmati, E. Kalnay, B. R. Hunt, E. Ott, E. Satterfield, and J. A. Yorke, 2008: A local ensemble transform Kalman filter data assimilation system for the NCEP global model. Tellus, 60A, 113130, doi:10.1111/j.1600-0870.2007.00274.x.

    • Search Google Scholar
    • Export Citation
  • Tavolato, C., and L. Isaksen, 2010: Huber norm quality control in the IFS. ECMWF Newsletter, Vol. 122, ECMWF, Reading, United Kingdom, 27–31.

  • Torn, R. D., 2010: Performance of a mesoscale ensemble Kalman filter (EnKF) during the NOAA high-resolution hurricane test. Mon. Wea. Rev., 138, 43754392, doi:10.1175/2010MWR3361.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2009: Ensemble data assimilation applied to RAINEX: Observations of Hurricane Katrina (2005). Mon. Wea. Rev., 137, 28172829, doi:10.1175/2009MWR2656.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and C. Snyder, 2012: Uncertainty of tropical cyclone best-track information. Wea. Forecasting, 27, 715729, doi:10.1175/WAF-D-11-00085.1.

    • Search Google Scholar
    • Export Citation
  • Trahan, S., and L. Sparling, 2012: An analysis of NCEP Tropical Cyclone Vitals and potential effects on forecasting models. Wea. Forecasting, 27, 744756, doi:10.1175/WAF-D-11-00063.1.

    • Search Google Scholar
    • Export Citation
  • Weissmann, M., and Coauthors, 2011: The influence of assimilating dropsonde data on typhoon track and midlatitude forecasts. Mon. Wea. Rev., 139, 908920, doi:10.1175/2010MWR3377.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., J.-H. Chen, P.-H. Lin, and K.-H. Chou, 2007a: Targeted observations of tropical cyclone movement based on the adjoint-derived sensitivity steering vector. J. Atmos. Sci., 64, 26112626, doi:10.1175/JAS3974.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., K.-H. Chou, P.-H. Lin, S. D. Aberson, M. S. Peng, and T. Nakazawa, 2007b: The impact of dropwindsonde data on typhoon track forecasts in DOTSTAR. Wea. Forecasting, 22, 11571176, doi:10.1175/2007WAF2006062.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. Gamache, and F. Marks, 2011: Performance of cloud-resolving hurricane initialization an prediction during 2008-2010 with ensemble data assimilation of inner-core airborne Dopper radar observations. Geophys. Res. Lett., 38, L15810, doi:10.1029/2011GL048469.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 507 91 9
PDF Downloads 170 37 6