Abstract
The authors have developed an assimilation system toward coastal data assimilation around Japan, which consists of a four-dimensional variational (4DVAR) assimilation scheme with an eddy-resolving model in the western North Pacific (MOVE-4DVAR-WNP) and a fine-resolution coastal model covering the western part of the Japanese coastal region around the Seto Inland Sea (MOVE-Seto). The 4DVAR scheme is developed as a natural extension of the 3DVAR scheme used in the Meteorological Research Institute Multivariate Ocean Variational Estimation (MOVE) system. An initialization scheme of incremental analysis update (IAU) is incorporated into MOVE-4DVAR-WNP to filter out high-frequency noises. During the backward integration of the adjoint model, it works as an incremental digital filtering. MOVE-Seto, which is nested within MOVE-4DVAR-WNP, also employs IAU to initialize the interior of the coastal model using MOVE-4DVAR-WNP analysis fields. The authors conducted an assimilation experiment using MOVE-4DVAR-WNP, and results were compared with an additional experiment using the 3DVAR scheme. The comparison reveals that MOVE-4DVAR-WNP improves mesoscale variability. In particular, short-term variability such as small-scale Kuroshio fluctuations is much enhanced. Using MOVE-Seto and MOVE-4DVAR-WNP, the authors also performed a case study focused on an unusual tide event that occurred at the south coast of Japan in September 2011. MOVE-Seto succeeds in reproducing a significant sea level rise associated with this event, indicating the effectiveness of the newly developed system for coastal sea level variability.
This article is included in the Sixth WMO Data Assimilation Symposium Special Collection.