Development of a Four-Dimensional Variational Assimilation System for Coastal Data Assimilation around Japan

Norihisa Usui Oceanography and Geochemistry Research Department, Meteorological Research Institute, Tsukuba, Japan

Search for other papers by Norihisa Usui in
Current site
Google Scholar
PubMed
Close
,
Yosuke Fujii Oceanography and Geochemistry Research Department, Meteorological Research Institute, Tsukuba, Japan

Search for other papers by Yosuke Fujii in
Current site
Google Scholar
PubMed
Close
,
Kei Sakamoto Oceanography and Geochemistry Research Department, Meteorological Research Institute, Tsukuba, Japan

Search for other papers by Kei Sakamoto in
Current site
Google Scholar
PubMed
Close
, and
Masafumi Kamachi Oceanography and Geochemistry Research Department, Meteorological Research Institute, Tsukuba, Japan

Search for other papers by Masafumi Kamachi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors have developed an assimilation system toward coastal data assimilation around Japan, which consists of a four-dimensional variational (4DVAR) assimilation scheme with an eddy-resolving model in the western North Pacific (MOVE-4DVAR-WNP) and a fine-resolution coastal model covering the western part of the Japanese coastal region around the Seto Inland Sea (MOVE-Seto). The 4DVAR scheme is developed as a natural extension of the 3DVAR scheme used in the Meteorological Research Institute Multivariate Ocean Variational Estimation (MOVE) system. An initialization scheme of incremental analysis update (IAU) is incorporated into MOVE-4DVAR-WNP to filter out high-frequency noises. During the backward integration of the adjoint model, it works as an incremental digital filtering. MOVE-Seto, which is nested within MOVE-4DVAR-WNP, also employs IAU to initialize the interior of the coastal model using MOVE-4DVAR-WNP analysis fields. The authors conducted an assimilation experiment using MOVE-4DVAR-WNP, and results were compared with an additional experiment using the 3DVAR scheme. The comparison reveals that MOVE-4DVAR-WNP improves mesoscale variability. In particular, short-term variability such as small-scale Kuroshio fluctuations is much enhanced. Using MOVE-Seto and MOVE-4DVAR-WNP, the authors also performed a case study focused on an unusual tide event that occurred at the south coast of Japan in September 2011. MOVE-Seto succeeds in reproducing a significant sea level rise associated with this event, indicating the effectiveness of the newly developed system for coastal sea level variability.

Corresponding author address: Norihisa Usui, Oceanography and Geochemistry Research Department, Meteorological Research Institute, Nagamine 1-1, Tsukuba 305-0052, Japan. E-mail: nusui@mri-jma.go.jp

This article is included in the Sixth WMO Data Assimilation Symposium Special Collection.

Abstract

The authors have developed an assimilation system toward coastal data assimilation around Japan, which consists of a four-dimensional variational (4DVAR) assimilation scheme with an eddy-resolving model in the western North Pacific (MOVE-4DVAR-WNP) and a fine-resolution coastal model covering the western part of the Japanese coastal region around the Seto Inland Sea (MOVE-Seto). The 4DVAR scheme is developed as a natural extension of the 3DVAR scheme used in the Meteorological Research Institute Multivariate Ocean Variational Estimation (MOVE) system. An initialization scheme of incremental analysis update (IAU) is incorporated into MOVE-4DVAR-WNP to filter out high-frequency noises. During the backward integration of the adjoint model, it works as an incremental digital filtering. MOVE-Seto, which is nested within MOVE-4DVAR-WNP, also employs IAU to initialize the interior of the coastal model using MOVE-4DVAR-WNP analysis fields. The authors conducted an assimilation experiment using MOVE-4DVAR-WNP, and results were compared with an additional experiment using the 3DVAR scheme. The comparison reveals that MOVE-4DVAR-WNP improves mesoscale variability. In particular, short-term variability such as small-scale Kuroshio fluctuations is much enhanced. Using MOVE-Seto and MOVE-4DVAR-WNP, the authors also performed a case study focused on an unusual tide event that occurred at the south coast of Japan in September 2011. MOVE-Seto succeeds in reproducing a significant sea level rise associated with this event, indicating the effectiveness of the newly developed system for coastal sea level variability.

Corresponding author address: Norihisa Usui, Oceanography and Geochemistry Research Department, Meteorological Research Institute, Nagamine 1-1, Tsukuba 305-0052, Japan. E-mail: nusui@mri-jma.go.jp

This article is included in the Sixth WMO Data Assimilation Symposium Special Collection.

Save
  • Bennett, A. F., 1992: Inverse Methods in Physical Oceanography. Cambridge University Press, 346 pp.

  • Bennett, A. F., 2002: Inverse Modeling of the Ocean and Atmosphere. Cambridge University Press, 234 pp.

  • Bloom, S. C., L. L. Takacs, A. M. D. Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 1256–1271, doi:10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Broquet, G., C. Edwards, A. Moore, B. Powell, M. Veneziani, and J. Doyle, 2009: Application of 4D-Variational data assimilation to the California current system. Dyn. Atmos. Oceans, 48, 69–92, doi:10.1016/j.dynatmoce.2009.03.001.

    • Search Google Scholar
    • Export Citation
  • Chua, B. S., and A. F. Bennett, 2001: An inverse ocean modeling system. Ocean Modell., 3, 137–165, doi:10.1016/S1463-5003(01)00006-3.

    • Search Google Scholar
    • Export Citation
  • CLS, 2004: SSALTO/DUACS user handbook: (M)SLA and (M)ADT near-real time and delayed time products. Centre National d’Etudes Spatiales Rep. CLS-DOS-NT-04-103, 42 pp.

  • Conkright, M., and Coauthors, 2002: Introduction. Vol. 1, World Ocean Database 2001, NOAA Atlas NESDIS 42, 167 pp.

  • Courtier, P., J.-N. Thepaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367–1387, doi:10.1002/qj.49712051912.

    • Search Google Scholar
    • Export Citation
  • Cummings, J., and Coauthors, 2009: Ocean data assimilation systems for GODAE. Oceanography, 22, 96–109, doi:10.5670/oceanog.2009.69.

    • Search Google Scholar
    • Export Citation
  • Dombrowsky, E., and Coauthors, 2009: GODAE systems in operation. Oceanography, 22, 80–95, doi:10.5670/oceanog.2009.68.

  • Evensen, G., 2007: Data Assimilation: The Ensemble Kalman Filter. Springer, 307 pp.

  • Fujii, Y., 2005: Preconditioned optimizing utility for large-dimensional analyses (popular). J. Oceanogr., 61, 167–181, doi:10.1007/s10872-005-0029-z.

    • Search Google Scholar
    • Export Citation
  • Fujii, Y., and M. Kamachi, 2003a: A reconstruction of observed profiles in the sea east of Japan using vertical coupled temperature-salinity EOF modes. J. Oceanogr., 59, 173–186, doi:10.1023/A:1025539104750.

    • Search Google Scholar
    • Export Citation
  • Fujii, Y., and M. Kamachi, 2003b: Three-dimensional analysis of temperature and salinity in the equatorial Pacific using a variational method with vertical coupled temperature-salinity EOF modes. J. Geophys. Res., 108, 3297, doi:10.1029/2002JC001745.

    • Search Google Scholar
    • Export Citation
  • Fujii, Y., S. Ishizaki, and M. Kamachi, 2005: Application of nonlinear constraints in a three-dimensional variational ocean analysis. J. Oceanogr., 61, 655–662, doi:10.1007/s10872-005-0073-8.

    • Search Google Scholar
    • Export Citation
  • Fujii, Y., H. Tsujino, N. Usui, H. Nakano, and M. Kamachi, 2008: Application of singular vector analysis to the Kuroshio large meander. J. Geophys. Res., 113, C07026, doi:10.1029/2007JC004476.

    • Search Google Scholar
    • Export Citation
  • Fujii, Y., T. Nakano, N. Usui, S. Matsumoto, H. Tsujino, and M. Kamachi, 2013: Pathways of the North Pacific intermediate water identified through the tangent linear and adjoint models of an ocean general circulation model. J. Geophys. Res., 118, 2035–2051, doi:10.1002/jgrc.20094.

    • Search Google Scholar
    • Export Citation
  • Fukumori, I., 2002: A partitioned Kalman filter and smoother. Mon. Wea. Rev., 130, 1370–1383, doi:10.1175/1520-0493(2002)130<1370:APKFAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and P. Malanotte-Rizzoli, 1991: Data assimilation in meteorology and oceanography. Advances in Geophysics, Vol. 33, Academic Press, 141–266, doi:10.1016/S0065-2687(08)60442-2.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128, 2935–2946, doi:10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamilton, D., 1994: GTSPP builds an ocean temperature-salinity database. Earth Syst. Monit., 4, 4–5.

  • Hanawa, K., and F. Mitsudera, 1985: On the data processings of daily mean values of oceanographical data. Note on the daily mean sea-level data (in Japanese). Bull. Coast. Oceanogr., 23, 4–5.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and J. K. Ducowicz, 1997: An elastic-viscous-plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 1849–1867, doi:10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and J. K. Ducowicz, 2002: The elastic-viscous-plastic sea ice dynamics model in general orthogonal curvilinear coordinates on a sphere: Incorporation of metric terms. Mon. Wea. Rev., 130, 1848–1865, doi:10.1175/1520-0493(2002)130<1848:TEVPSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., and Coauthors, 2009: High-resolution global and basin-scale ocean analyses and forecasts. Oceanography, 22, 110–127, doi:10.5670/oceanog.2009.70.

    • Search Google Scholar
    • Export Citation
  • Ishikawa, Y., T. Awaji, T. Toyoda, T. In, K. Nishina, T. Nakayama, S. Shima, and S. Masuda, 2009: High-resolution synthetic monitoring by a 4-dimensional variational data assimilation system in the northwestern North Pacific. J. Mar. Syst., 78, 237–248, doi:10.1016/j.jmarsys.2009.02.016.

    • Search Google Scholar
    • Export Citation
  • Kawabe, M., 1980: Sea level variations along the south coast of Japan and the large meander in the Kuroshio. J. Oceanogr. Soc. Japan, 36, 97–104, doi:10.1007/BF02312095.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., D. J. Webb, D. Stainforth, and S. M. Paterson, 1991: The development of a free-surface Bryan–Cox–Semtner ocean model. J. Phys. Oceanogr., 21, 1333–1348, doi:10.1175/1520-0485(1991)021<1333:TDOAFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kondo, J., 1975: Air–sea bulk transfer coefficients in diabatic conditions. Bound.-Layer Meteor., 9, 91–112, doi:10.1007/BF00232256.

    • Search Google Scholar
    • Export Citation
  • Kourafalou, V., and Coauthors, 2015: Coastal Ocean Forecasting: System integration and evaluation. J. Oper. Oceanogr., 8 (S1) s127–s146, doi:10.1080/1755876X.2015.1022336.

    • Search Google Scholar
    • Export Citation
  • Kuragano, T., and M. Kamachi, 2000: Global statistical space-time scales of oceanic variability estimated from the TOPEX/POSEIDON altimetry data. J. Geophys. Res., 105, 955–974, doi:10.1029/1999JC900247.

    • Search Google Scholar
    • Export Citation
  • Kuragano, T., Y. Fujii, T. Toyoda, N. Usui, K. Ogawa, and M. Kamachi, 2014: Seasonal barotropic sea surface height fluctuation in relation to regional ocean mass variation. J. Oceanogr., 70, 45–62, doi:10.1007/s10872-013-0211-7.

    • Search Google Scholar
    • Export Citation
  • Kurapov, A. L., D. Foley, P. T. Strub, G. D. Egbert, and J. S. Allen, 2011: Variational assimilation of satellite observations in a coastal ocean model off Oregon. J. Geophys. Res., 116, C05006, doi:10.1029/2010JC006909.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., T. Sakurai, and T. Kuragano, 2000: Global daily sea surface temperature analysis using data from satellite microwave radiometer, satellite infrared radiometer and in-situ observations (in Japanese). Wea. Bull., 73, S1–S18.

    • Search Google Scholar
    • Export Citation
  • Lewis, J. M., S. Lakshmivarahan, and S. Dhall, 2006: Dynamic Data Assimilation: A Least Squares Approach. Cambridge University Press, 654 pp.

  • Madec, G., P. Delecluse, M. Imbard, and C. Levy, 1998: OPA 8.1 Ocean General Circulation Model reference manual. Institut Pierre-Simon Laplace Note du Pole de Modélisation 11, 91 pp. [Available online at http://www.nemo-ocean.eu/content/download/259/1665/file/Doc_OPA8.1.pdf.]

  • Mellor, G. L., and L. Kantha, 1989: An ice-ocean coupled model. J. Geophys. Res., 94, 10 937–10 954, doi:10.1029/JC094iC08p10937.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., H. G. Arango, G. Broquet, B. S. Powell, A. T. Weaver, and J. Zavala-Garay, 2011: The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: Part I—System overview and formulation. Prog. Oceanogr., 91, 34–49, doi:10.1016/j.pocean.2011.05.004.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., and H. J. Kim, 1999: Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface processes. J. Geophys. Res., 104, 15 621–15 634, doi:10.1029/1999JC900068.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369–432, doi:10.2151/jmsj.85.369.

  • Polavarapu, S., S. Ren, A. Clayton, D. Sankey, and Y. Rochon, 2004: On the relationship between incremental analysis updating and incremental digital filtering. Mon. Wea. Rev., 132, 2495–2502, doi:10.1175/1520-0493(2004)132<2495:OTRBIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Powell, B., H. Arango, A. Moore, E. D. Lorenzo, R. Milliff, and D. Foley, 2008: 4DVAR data assimilation in the Intra-Americas Sea with the Regional Ocean Modeling System (ROMS). Ocean Modell., 23, 130–145, doi:10.1016/j.ocemod.2008.04.008.

    • Search Google Scholar
    • Export Citation
  • Prather, M. J., 1986: Numerical advection by conservation of second-order moments. J. Geophys. Res., 91, 6671–6681, doi:10.1029/JD091iD06p06671.

    • Search Google Scholar
    • Export Citation
  • Senjyu, T., M. Matsuyama, and N. Matsubara, 1999: Interannual and decadal sea-level variations along the Japanese coast. J. Oceanogr., 55, 619–633, doi:10.1023/A:1007844903204.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347–404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Talagrand, O., 1997: Assimilation of observations, an introduction. J. Meteor. Soc. Japan, 75, 191–209.

  • Thompson, R. O. R. Y., 1983: Low-pass filters to supress inertial and tide frequencies. J. Phys. Oceanogr., 13, 1077–1083, doi:10.1175/1520-0485(1983)013<1077:LPFTSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tsujino, H., N. Usui, and H. Nakano, 2006: Dynamics of Kuroshio path variations in a high-resolution GCM. J. Geophys. Res., 111, C11001, doi:10.1029/2005JC003118.

    • Search Google Scholar
    • Export Citation
  • Tsujino, H., T. Motoi, I. Ishikawa, M. Hirabara, H. Nakano, G. Yamanaka, T. Yasuda, and H. Ishizaki, 2010: Reference manual for the Meteorological Research Institute Community Ocean Model (mri.com) version 3. Meteorological Research Institute Tech. Rep. 59, 241 pp. [Available online at http://www.mri-jma.go.jp/Publish/Technical/DATA/VOL_59/59_en.html.]

  • Ueno, H., and I. Yasuda, 2000: Distribution and formation of the mesothermal structure (temperature inversions) in the North Pacific subarctic region. J. Geophys. Res., 105, 16 885–16 897, doi:10.1029/2000JC900020.

    • Search Google Scholar
    • Export Citation
  • Usui, N., S. Ishizaki, Y. Fujii, H. Tsujino, T. Yasuda, and M. Kamachi, 2006: Meteorological Research Institute multivariate ocean variational estimation (MOVE) system: Some early results. Adv. Space Res., 37, 806–822, doi:10.1016/j.asr.2005.09.022.

    • Search Google Scholar
    • Export Citation
  • Usui, N., H. Tsujino, H. Nakano, and Y. Fujii, 2011: Decay mechanism of the 2004/05 Kuroshio large meander. J. Geophys. Res., 116, C10010, doi:10.1029/2011JC007009.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., A. T. Weaver, D. L. T. Anderson, and P. Delecluse, 2003: Three- and four-dimensional variational assimilation with a general circulation model of the tropical Pacific Ocean. Part II: Physical validation. Mon. Wea. Rev., 131, 1379–1395, doi:10.1175/1520-0493(2003)131<1379:TAFVAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weatherly, G. L., 1972: A study of the bottom boundary layer of the Florida current. J. Phys. Oceanogr., 2, 54–72.

  • Weaver, A. T., J. Vialard, and D. L. T. Anderson, 2003: Three- and four-dimensional variational assimilation with a general circulation model of the tropical Pacific Ocean. Part I: Formulation, internal diagnostics, and consistency checks. Mon. Wea. Rev., 131, 1360–1378, doi:10.1175/1520-0493(2003)131<1360:TAFVAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 442 pp.

  • Zhang, W. G., J. L. Wilkin, and H. G. Arango, 2010: Towards an integrated observation and modeling system in the New York bight using variational methods. Part I: 4DVAR data assimilation. Ocean Modell., 35, 119–133, doi:10.1016/j.ocemod.2010.08.003.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., and M. Kamachi, 2000: An adaptive variational method for data assimilation with imperfect models. Tellus, 52, 265–279, doi:10.1034/j.1600-0870.2000.d01-3.x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1370 509 53
PDF Downloads 387 110 6