A Comparison of Model Error Representations in Mesoscale Ensemble Data Assimilation

Soyoung Ha National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Soyoung Ha in
Current site
Google Scholar
PubMed
Close
,
Judith Berner National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Judith Berner in
Current site
Google Scholar
PubMed
Close
, and
Chris Snyder National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Chris Snyder in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Mesoscale forecasts are strongly influenced by physical processes that are either poorly resolved or must be parameterized in numerical models. In part because of errors in these parameterizations, mesoscale ensemble data assimilation systems generally suffer from underdispersiveness, which can limit the quality of analyses. Two explicit representations of model error for mesoscale ensemble data assimilation are explored: a multiphysics ensemble in which each member’s forecast is based on a distinct suite of physical parameterization, and stochastic kinetic energy backscatter in which small noise terms are included in the forecast model equations. These two model error techniques are compared with a baseline experiment that includes spatially and temporally adaptive covariance inflation, in a domain over the continental United States using the Weather Research and Forecasting (WRF) Model for mesoscale ensemble forecasts and the Data Assimilation Research Testbed (DART) for the ensemble Kalman filter. Verification against independent observations and Rapid Update Cycle (RUC) 13-km analyses for the month of June 2008 showed that including the model error representation improved not only the analysis ensemble, but also short-range forecasts initialized from these analyses. Explicitly accounting for model uncertainty led to a better-tuned ensemble spread, a more skillful ensemble mean, and higher probabilistic scores, as well as significantly reducing the need for inflation. In particular, the stochastic backscatter scheme consistently outperformed both the multiphysics approach and the control run with adaptive inflation over almost all levels of the atmosphere both deterministically and probabilistically.

Corresponding author address: Dr. Soyoung Ha, NCAR/MMM, 3450 Mitchell Lane, P.O. Box 3000, Boulder, CO 80301. E-mail: syha@ucar.edu

Abstract

Mesoscale forecasts are strongly influenced by physical processes that are either poorly resolved or must be parameterized in numerical models. In part because of errors in these parameterizations, mesoscale ensemble data assimilation systems generally suffer from underdispersiveness, which can limit the quality of analyses. Two explicit representations of model error for mesoscale ensemble data assimilation are explored: a multiphysics ensemble in which each member’s forecast is based on a distinct suite of physical parameterization, and stochastic kinetic energy backscatter in which small noise terms are included in the forecast model equations. These two model error techniques are compared with a baseline experiment that includes spatially and temporally adaptive covariance inflation, in a domain over the continental United States using the Weather Research and Forecasting (WRF) Model for mesoscale ensemble forecasts and the Data Assimilation Research Testbed (DART) for the ensemble Kalman filter. Verification against independent observations and Rapid Update Cycle (RUC) 13-km analyses for the month of June 2008 showed that including the model error representation improved not only the analysis ensemble, but also short-range forecasts initialized from these analyses. Explicitly accounting for model uncertainty led to a better-tuned ensemble spread, a more skillful ensemble mean, and higher probabilistic scores, as well as significantly reducing the need for inflation. In particular, the stochastic backscatter scheme consistently outperformed both the multiphysics approach and the control run with adaptive inflation over almost all levels of the atmosphere both deterministically and probabilistically.

Corresponding author address: Dr. Soyoung Ha, NCAR/MMM, 3450 Mitchell Lane, P.O. Box 3000, Boulder, CO 80301. E-mail: syha@ucar.edu
Save
  • Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A, 210224, doi:10.1111/j.1600-0870.2006.00216.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, doi:10.1111/j.1600-0870.2008.00361.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 27412758, doi:10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, doi:10.1175/2009BAMS2618.1.

    • Search Google Scholar
    • Export Citation
  • Ballish, B. A., and V. K. Kumar, 2008: Systematic differences in aircraft and radiosonde temperatures. Bull. Amer. Meteor. Soc., 89, 16891708, doi:10.1175/2008BAMS2332.1.

    • Search Google Scholar
    • Export Citation
  • Berner, J., G. Shutts, M. Leutbecher, and T. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603626, doi:10.1175/2008JAS2677.1.

    • Search Google Scholar
    • Export Citation
  • Berner, J., S.-Y. Ha, J. P. Hacker, A. Fournier, and C. Snyder, 2011: Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multi-physics representations. Mon. Wea. Rev., 139, 19721995, doi:10.1175/2010MWR3595.1.

    • Search Google Scholar
    • Export Citation
  • Berner, J., K. R. Fossell, S.-Y. Ha, J. P. Hacker, and C. Snyder, 2015: Increasing the skill of probabilistic forecasts: Understanding performance improvements from model-error representations. Mon. Wea. Rev., 143, 12951320, doi:10.1175/MWR-D-14-00091.1.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Milleer, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 28872908, doi:10.1002/qj.49712556006.

    • Search Google Scholar
    • Export Citation
  • Charron, M., G. Pellerin, L. Spacek, P. L. Houtekamer, N. Gagnon, H. L. Mitchell, and L. Michelin, 2010: Toward random sampling of model error in the Canadian ensemble prediction system. Mon. Wea. Rev., 138, 18771901, doi:10.1175/2009MWR3187.1.

    • Search Google Scholar
    • Export Citation
  • Fujita, T., D. J. Stensrud, and D. C. Dowell, 2007: Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainties. Mon. Wea. Rev., 135, 18461868, doi:10.1175/MWR3391.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 58, 978997, doi:10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2006: Comment on preliminary tests of multiscale modeling with a two-dimensional framework: Sensitivity to coupling methods. Mon. Wea. Rev., 134, 20212026, doi:10.1175/MWR3161.1.

    • Search Google Scholar
    • Export Citation
  • Ha, S.-Y., and C. Snyder, 2014: Influence of surface observations in mesoscale data assimilation using an ensemble Kalman filter. Mon. Wea. Rev., 142, 14891508, doi:10.1175/MWR-D-13-00108.1.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and Coauthors, 2011: The U.S. Air Force Weather Agency’s mesoscale ensemble: Scientific description and performance results. Tellus, 63A, 625641, doi:10.1111/j.1600-0870.2010.00497.x.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2005: Accounting for the error due to unresolved scales in ensemble data assimilation: A comparison of different approaches. Mon. Wea. Rev., 133, 31323147, doi:10.1175/MWR3020.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2011: What constrains spread growth in forecasts initialized from ensemble Kalman filters? Mon. Wea. Rev., 139, 117131, doi:10.1175/2010MWR3246.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790, doi:10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Wea. Rev., 133, 604620, doi:10.1175/MWR-2864.1.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. L. Mitchell, and X. Deng, 2009: Model error representation in an operational ensemble Kalman filter. Mon. Wea. Rev., 137, 21262143, doi:10.1175/2008MWR2737.1.

    • Search Google Scholar
    • Export Citation
  • Isaksen, L., M. Fisher, and J. Berner, Eds., 2007: Use of analysis ensembles in estimating flow-dependent background error variance. Proc. ECMWF Workshop on Flow-Dependent Aspects of Data Assimilation, Reading, United Kingdom, ECMWF, 6586.

  • Khairoutdinov, M. F., A. Randall, and C. DeMott, 2005: Simulations of the atmospheric general circulation using a cloud-resolving model as a super parameterization of physical processes. J. Atmos. Sci., 62, 21362154, doi:10.1175/JAS3453.1.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP global data assimilation system. Wea. Forecasting, 24, 16911705, doi:10.1175/2009WAF2222201.1.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 1999: Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech., 388, 259288, doi:10.1017/S0022112099004851.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2007: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Mon. Wea. Rev., 135, 14031423, doi:10.1175/MWR3352.1.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2008: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3DVAR in a real-data case study. Mon. Wea. Rev., 136, 522540, doi:10.1175/2007MWR2106.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, H. L., and P. L. Houtekamer, 2000: An adaptive ensemble Kalman filter. Mon. Wea. Rev., 128, 416–433.

  • Mitchell, H. L., P. L. Houtekamer, and G. Pellerin, 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130, 27912808, doi:10.1175/1520-0493(2002)130<2791:ESBAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, doi:10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • Romine, G., C. Schwartz, C. Snyder, J. Anderson, and M. Weisman, 2013: Model bias in a continuously cycled assimilation system and its influence on convection-permitting forecasts. Mon. Wea. Rev., 141, 12631284, doi:10.1175/MWR-D-12-00112.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2009: Next-day convection-allowing WRF model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 33513372, doi:10.1175/2009MWR2924.1.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 30793102, doi:10.1256/qj.04.106.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, doi:10.1175/MWR2830.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Tennant, W. J., G. J. Shutts, and S. A. T. A. Arribas, 2011: Using a stochastic kinetic energy backscatter scheme to improve MOGREPS probabilistic forecast skill. Mon. Wea. Rev., 139, 11901206, doi:10.1175/2010MWR3430.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary conditions for limited-area ensemble Kalman filers. Mon. Wea. Rev., 134, 24902502, doi:10.1175/MWR3187.1.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and N. L. Seaman, 1997: A comparison study of convective parameterization schemes in a mesoscale model. Mon. Wea. Rev., 125, 252277, doi:10.1175/1520-0493(1997)125<0252:ACSOCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, doi:10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 30783089, doi:10.1175/MWR-D-11-00276.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 405 223 10
PDF Downloads 327 81 11