The Thermodynamic and Microphysical Evolution of an Intense Snowband during the Northeast U.S. Blizzard of 8–9 February 2013

Sara A. Ganetis School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

Search for other papers by Sara A. Ganetis in
Current site
Google Scholar
PubMed
Close
and
Brian A. Colle School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

Search for other papers by Brian A. Colle in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An intense snowband developed across Long Island, New York, to the north and west of the surface cyclone center on 8–9 February 2013. The snowband evolved through three distinct phases during its 12-h lifetime. During phase 1 the band developed in an area of low-to-midlevel frontogenesis and pivoted over central Long Island and southern Connecticut, where it remained for approximately 10 h. The environment surrounding the snowband cooled to <0°C; however, the band was collocated with a 900–700-hPa layer that remained above 0°C for ~5 h. During phase 2 the band exhibited heavy snowfall rates exceeding 7.5–10 cm h−1 with large and aggregated snow, wet-growth hail-like particles, and a radar reflectivity of ~55 dBZ. About 1 h later during phase 3, the snowband reflectivity decreased to near 30 dBZ and was characterized by less dense snow in a colder environment while still maintaining heavy snowfall rates (6.5–6.7 cm h−1). The Weather Research and Forecasting (WRF) Model was used to analyze the band and temperature evolution. Model trajectories terminating within the warmer snowband environment underwent rapid ascent on the east side of the band during which condensation and deposition enhanced the warming before undergoing rapid descent within the band. Analysis of the thermodynamic equation within the band environment revealed that this subsidence warming and upstream condensational heating for trajectories entering the band partially offset the diabatic cooling term, which supported a warmer layer and mixed precipitation during phase 2. Finally, model sensitivity tests showed that melting helped cool low levels and change the microphysical character to all snow during phase 3.

Corresponding author address: Sara A. Ganetis, School of Marine and Atmospheric Sciences, Stony Brook University, 119 Endeavour Hall, Stony Brook, NY 11794-5000. E-mail: sara.ganetis@stonybrook.edu

Abstract

An intense snowband developed across Long Island, New York, to the north and west of the surface cyclone center on 8–9 February 2013. The snowband evolved through three distinct phases during its 12-h lifetime. During phase 1 the band developed in an area of low-to-midlevel frontogenesis and pivoted over central Long Island and southern Connecticut, where it remained for approximately 10 h. The environment surrounding the snowband cooled to <0°C; however, the band was collocated with a 900–700-hPa layer that remained above 0°C for ~5 h. During phase 2 the band exhibited heavy snowfall rates exceeding 7.5–10 cm h−1 with large and aggregated snow, wet-growth hail-like particles, and a radar reflectivity of ~55 dBZ. About 1 h later during phase 3, the snowband reflectivity decreased to near 30 dBZ and was characterized by less dense snow in a colder environment while still maintaining heavy snowfall rates (6.5–6.7 cm h−1). The Weather Research and Forecasting (WRF) Model was used to analyze the band and temperature evolution. Model trajectories terminating within the warmer snowband environment underwent rapid ascent on the east side of the band during which condensation and deposition enhanced the warming before undergoing rapid descent within the band. Analysis of the thermodynamic equation within the band environment revealed that this subsidence warming and upstream condensational heating for trajectories entering the band partially offset the diabatic cooling term, which supported a warmer layer and mixed precipitation during phase 2. Finally, model sensitivity tests showed that melting helped cool low levels and change the microphysical character to all snow during phase 3.

Corresponding author address: Sara A. Ganetis, School of Marine and Atmospheric Sciences, Stony Brook University, 119 Endeavour Hall, Stony Brook, NY 11794-5000. E-mail: sara.ganetis@stonybrook.edu
Save
  • Andrić, J., M. R. Kumjian, D. S. Zrnić, J. M. Straka, and V. M. Melnikov, 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, doi:10.1175/JAMC-D-12-028.1.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2009: Technical review of rapid refresh/RUC project. NOAA/ESRL/GSD internal review. [Available online at http://ruc.noaa.gov/pdf/RR-RUC-TR_11_3_2009.pdf.].

  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677691, doi:10.1002/qj.49711247307.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., D. Stark, and S. E. Yuter, 2014: Surface microphysical observations within East Coast winter storms on Long Island, New York. Mon. Wea. Rev., 142, 31263146, doi:10.1175/MWR-D-14-00035.1.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1985: Frontal circulations in the presence of small moist symmetric stability. J. Atmos. Sci., 42, 10621071, doi:10.1175/1520-0469(1985)042<1062:FCITPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evans, M., and M. L. Jurewicz, 2009: Correlations between analyses and forecasts of banded heavy snow ingredients and observed snowfall. Wea. Forecasting, 24, 337350, doi:10.1175/2008WAF2007105.1.

    • Search Google Scholar
    • Export Citation
  • Fuhrmann, C. M., and C. E. Konrad, 2013: A trajectory approach to analyzing the ingredients associated with heavy winter storms in central North Carolina. Wea. Forecasting, 28, 647667, doi:10.1175/WAF-D-12-00079.1.

    • Search Google Scholar
    • Export Citation
  • Griffin, E. M., T. J. Schuur, A. V. Ryzhkov, H. D. Reeves, and J. C. Picca, 2014: A polarimetric and microphysical investigation of the Northeast blizzard of 8–9 February 2013. Wea. Forecasting, 29, 12711294, doi:10.1175/WAF-D-14-00056.1.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. M. Goss, and M. E. Baldwin, 2000: The melting effect as a factor in precipitation-type forecasting. Wea. Forecasting, 15, 700714, doi:10.1175/1520-0434(2000)015<0700:TMEAAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, doi:10.15191/nwajom.2013.0119.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. A. Rutledge, R. M. Rasmussen, P. C. Kennedy, and M. Dixon, 2014: High-resolution polarimetric radar observations of snow-generating cells. J. Appl. Meteor. Climatol., 53, 16361658, doi:10.1175/JAMC-D-13-0312.1.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., K. Keeter, L. G. Lee, and M. B. Ek, 2002: Model representation of freezing and melting precipitation: Implications for winter weather forecasting. Wea. Forecasting, 17, 10161033, doi:10.1175/1520-0434(2003)017<1016:MROFAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Market, P. S., R. W. Przybylinski, and S. M. Rochette, 2006: The role of sublimational cooling in a late-season Midwestern snow event. Wea. Forecasting, 21, 364382, doi:10.1175/WAF919.1.

    • Search Google Scholar
    • Export Citation
  • Market, P. S., K. Crandall, and R. Rauber, 2012: High-resolution rawinsonde observations of the cold-sector precipitation regions in transient mid-latitude extratropical cyclones. Natl. Wea. Dig., 36, 38.

    • Search Google Scholar
    • Export Citation
  • Miller, J. E., 1946: Cyclogenesis in the Atlantic coastal region of the United States. J. Meteor., 3, 3144, doi:10.1175/1520-0469(1946)003<0031:CITACR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murray, D., J. McWhirter, S. Wier, and S. Emmerson, 2003: The integrated data viewer— A web-enabled application for scientific analysis and visualization. 19th Int. Conf. on Interactive Information Processing Systems (IIPS) for Meteorology, Oceanography and Hydrology, Long Beach, CA, Amer. Meteor. Soc., 13.2. [Available online at https://ams.confex.com/ams/pdfpapers/57870.pdf.]

  • Nicosia, D. J., and R. H. Grumm, 1999: Mesoscale band formation in three major northeastern United States snowstorms. Wea. Forecasting, 14, 346368, doi:10.1175/1520-0434(1999)014<0346:MBFITM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., and B. A. Colle, 2012: Diagnosing snowband predictability using a multimodel ensemble system. Wea. Forecasting, 27, 565585, doi:10.1175/WAF-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., L. F. Bosart, D. Keyser, and J. S. Waldstreicher, 2004: An observational study of cold season–banded precipitation in northeast U.S. cyclones. Wea. Forecasting, 19, 9931010, doi:10.1175/815.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and S. E. Yuter, 2008: High-resolution observations and model simulations of the life cycle of an intense mesoscale snowband over the northeastern United States. Mon. Wea. Rev., 136, 14331456, doi:10.1175/2007MWR2233.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and R. McTaggart-Cowan, 2009: The role of moist processes in the formation and evolution of mesoscale snowbands within the comma head of northeast U.S. cyclones. Mon. Wea. Rev., 137, 26622686, doi:10.1175/2009MWR2874.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and A. R. Aiyyer, 2010: Evolution of mesoscale precipitation band environments within the comma head of northeast U.S. cyclones. Mon. Wea. Rev., 138, 23542374, doi:10.1175/2010MWR3219.1.

    • Search Google Scholar
    • Export Citation
  • Picca, J. C., D. M. Schultz, B. A. Colle, S. Ganetis, D. R. Novak, and M. J. Sienkiewicz, 2014: The value of dual-polarization radar in diagnosing the complex microphysical evolution of an intense snowband. Bull. Amer. Meteor. Soc., 95, 18251834, doi:10.1175/BAMS-D-13-00258.1.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., M. K. Macomber, D. M. Plummer, A. A. Rosenow, G. M. McFarquhar, B. F. Jewett, D. Leon, and J. M. Keeler, 2014: Finescale radar and airmass structure of the comma head of a continental winter cyclone: The role of three airstreams. Mon. Wea. Rev., 142, 42074229, doi:10.1175/MWR-D-14-00057.1.

    • Search Google Scholar
    • Export Citation
  • Rosenow, A. A., D. M. Plummer, R. M. Rauber, G. M. McFarquhar, B. F. Jewett, and D. Leon, 2014: Vertical velocity and physical structure of generating cells and convection in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15381558, doi:10.1175/JAS-D-13-0249.1.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and L. F. Bosart, 1985: Mesoscale structure in the megalopolitan snowstorm of 11–12 February 1983. Part I: Frontogenetical forcing and symmetric instability. J. Atmos. Sci., 42, 10501061, doi:10.1175/1520-0469(1985)042<1050:MSITMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.].

  • Stark, D., 2012: Field observations and modeling of the microphysics within winter storms over Long Island, NY. M.S. thesis, School of Marine and Atmospheric Sciences, Stony Brook University, 132 pp.

  • Stark, D., B. A. Colle, and S. E. Yuter, 2013: Observed microphysical evolution for two East Coast winter storms and the associated snow bands. Mon. Wea. Rev., 141, 20372057, doi:10.1175/MWR-D-12-00276.1.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., 2009: A users’ guide to RIP version 4.5: A program for visualizing mesoscale model output. NCAR. [Available online at http://www2.mmm.ucar.edu/wrf/users/docs/ripug.htm.]

  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified Noah land surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.]

  • Thompson, E. J., S. A. Rutledge, B. Dolan, V. Chandrasekar, and B. L. Cheong, 2014: A dual-polarization radar hydrometeor classification algorithm for winter precipitation. J. Atmos. Oceanic Technol., 31, 14571481, doi:10.1175/JTECH-D-13-00119.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., and K. A. Emanuel, 1985: Frontogenesis in the presence of small stability to slantwise convection. J. Atmos. Sci., 42, 18091824, doi:10.1175/1520-0469(1985)042<1809:FITPOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trapp, J. R., D. M. Schultz, A. V. Ryzhkov, and R. L. Holle, 2001: Multiscale structure and evolution of an Oklahoma winter precipitation event. Mon. Wea. Rev., 129, 486501, doi:10.1175/1520-0493(2001)129<0486:MSAEOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • UCAR/NCAR/CISL/VETS, 2013: NCAR Command Language (version 6.1.2). Boulder, CO, doi:10.5065/D6WD3XH5.

  • Wolfsberg, D. G., K. A. Emanuel, and R. E. Passarelli, 1986: Band formation in a New England winter storm. Mon. Wea. Rev., 114, 15521569, doi:10.1175/1520-0493(1986)114<1552:BFIANE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 435 106 9
PDF Downloads 370 94 9